GoldMine™®

Integrating with GoldMine
API Specifications and Examples
GoldMine Versions 5 through 7



Copyright © 2006 FrontRange Solutions Inc. All Rights Reserved.

This software includes software developed by the Apache Software Foundation
(http:// www.apache.org/).

The Sentry Spelling-Checker Engine Copyright © 1999 Wintertree Software Inc.

Use of this software and its related user documentation IS subject to the terms and
conditions of the applicable End-User License Agreement (EULA), a copy of which is
found in the user documentation. You must agree to the terms and conditions of the
EULA in order to use this software. If you do not agree to the terms and conditions
of the EULA, promptly return the unused software IN ITS UNOPENED CD
PACKAGE to the place from which you obtained it for a refund.

WARNING: The software described in this manual and its related user documentation
are protected by copyright law. In no event, shall any part of the related user
documentation be copied, reproduced, distributed, transmitted, stored in a retrieval
system, or translated into any language, without the express written permission of
FrontRange Solutions Inc.

Contact FrontRange Solutions Inc. at our Web site: www.frontrange.com



Table of Contents

Table of Contents

About this Manual

Style Conventions used in this Manual

Print Conventions

General Conventions

Mouse Conventions

Introduction to Integrating with GoldMine

Methods of Integrating with GoldMine

Integrating via Dynamic Data Exchange

Integrating via GMXS32.DLL

Integrating via the GoldMine XML API (GMXMLAPI.DLL)
Interacting with GoldMine via the GoldMine COM Server
Integrating via GoldMine Plug-ins

Integrating via a Database Engine

Comparing Integration Methods

Resources and Support

Open Developer Community

Technology Partner Program

Integration Tools

Working with Dynamic Data Exchange (DDE)

Using DDE in GoldMine

Merging Data into a Document

Updating Database Information

Querying for Data

Identifying Telephone Numbers Automatically

Linking Contact Records to an Accounting Application

Inserting Incoming E-mail

Linking GoldMine to MS Word for Windows

Entering Application, Topic, and Item Names

Establishing a DDE Conversation

Working with DDE Functions

17
17
17
18
19

21

22
22
22
22
23
23
23
23
24
24
25
25

27

29
29
29
30
30
30
30
30
30
31

33



Accessing Data Files

Accessing Contact Records

Accessing Specialized DDE Functions

Adding an Empty Record

Parameters

Return Value

Closing an Opened File
Deleting the Current Record

Creating a Subset of Records

Checking for an Xbase or SQL Table

Moving to a Specified Record

Opening a Data File

Limiting GoldMine Search Range

Reading a Field Value

Checking the Current Record Number or Record ID

Changing a Field Value

Performing a Sequential Search

Unlocking a Record

Linking GoldMine Fields with an External Application

Retrieving Login Credentials for Use with the GMXS32.DLL
Retrieving the RecID of the Current Opportunity

Completing a Calendar Activity

Displaying the Contact Record of an Incoming Caller

Running a Counter

Returning GoldMine Record Data

Processing a Web Import Instruction File

Reading an Xbase Expression Without Opening a File

Adding Merge Fields to a Form

Deleting Fields from a Form

Closing a Form Profile

Creating an Xbase File with Registered Fields

Returning a Field Name for an Expression

Returning a Value for Unattached Fields

Counting the Number of Exported Records

Creating a History Record

Creating or Updating a Document Link

Displaying a Message Dialog Box

Adding a Merge Form

33
33
34
34
35
35
35
37
37
40
42
43
44
45
46
47
48
48
53
53
53
54
55
58
58
62
62
63
64
65
65
66
66
67
67
69
70
72



Creating a Group 74
Adding a Group Member 76
Creating a Macro 76
Creating and Sending a Pager Message 78
Displaying a Message in the GoldMine Status Bar 79
Converting TLog Timestamps 80
DDE Macros 80
DDE Macros for Merge Forms 87
DDE Macros for the GoldMine License 89
Using GMXS32.DLL for Database Access and Sync Log Updates 91
Passing Multiple Parameters to a Function 92
Comparing Low Level/DDE Methodology to Business Logic Methodology 92
Loading GMXS32.DLL and Logging In 93
Setting the SQL Database Login Name and Password (GoldMine 6.7 or lower only) 93
Loading an API Session (GoldMine 7.0 or higher) 94
Loading a BDE Session (GoldMine 6.7 or lower) 95
Logging in a User 97
Closing an API Session (GoldMine 7.0 or higher) 97
Closing a BDE Session (GoldMine 6.7 or lower) 98
Logging in Multiple Users through the API 99
Logging In 99
Logging Out 100
Switching Between Login Sessions 100
Special Consideration for Multi-Threaded Applications 100
Working with Business Logic Functions using the Name/Value Pair Method 101
Creating an NV Container 101
Creating an NV Container with Copied Values 102
Copying Values between NV Containers 102
Deleting an NV Container 103
Reading Values from an NV Container 103
Storing NV Pairs in a Container 104
Searching for an NV Pair 104
Removing one NV Pair 106
Removing all NV Pairs from a Container 106
Totaling NV Pairs in a Container 107




Finding an NV Name

Finding an NV Value

Setting NV Pairs

Executing Business Logic Methods

Working with Multi-Value Name/Value Pairs

Determining the Type of a Name/Value Pair

Determining the Position of an NV Container in an NV Hierarchy
Getting the Number of Values in a Multi-Value Pair

Retrieving Containers from an NV Pair

Retrieving the Values in a Multi-Value Pair

Deleting Values from a Multi-Value Pair

Assigning a Container to a Parent

Creating an Empty Child Container Within the Parent

Appending String Values to a Multi-Value Pair

Low-level Data Access & Manipulation

Reading Security and Rights for a DLL User

Returning GoldMine Licensing Information

Returning Calendar Data

Retrieving Data with DataStream

Advantages of Using DataStream

DataStream Record Selection

GMW_DS_Range

GMW_DS_Query

GMW_DS_Fetch

GMW_DS_Close

Accessing Low-Level Data Using Work Areas

Opening a Data File

Closing a Data File

Checking for an SQL Table

Adding a Record

Deleting the Current Record

Querying for a Field Value

Checking the Current Record Number or Record ID

Unlocking a Record

Creating a Subset of Records

Limiting Search Scope

107
108
108
109

109
109
110
111
112
113
113
113
114
115

116
116
118
119
119
119
120
120
122
122
125
125
126
127
127
129
129
130
130
131
132
132



Performing a Sequential Search

Moving to the First Record Match

Setting the Current Index Tag

Positioning the Record Pointer

Moving to a Specified Record

Moving to the First Record

Moving to the Previous or Following Record

Moving to the Last Record

Seeking a Record

Reading a Field Value

Replacing a Field Value

Updating Sync Logs with GMXS32.DLL

Updating the Sync Log File

Importing a Prepared TLog Import File

Getting a New Record ID

Converting the Sync Stamp

Working with the XML API

Executing Your XML Document

Creating Your XML Document

Loading the API (GoldMine 7.0 or higher)

Loading BDE (GoldMine 6.7)

Logging in Subsequent Users

Logging Out
Unloading the API (GoldMine 7.0 or higher)

Unloading BDE (GoldMine 6.7)

Accessing Data with Business Logic Functions

Accessing Nested Nodes of Data

Business Logic Function Return Values

Accessing Low-level Data Manipulation Functionality
Retrieving Data with DataStream

Advantages of Using DataStream

DataStream Record Selection

DS_Range

DS_Query

DS_Fetch

DS_Close

133
134
134
135
136
136
137
137
138
138
139
140
140
141
142
143

145
146

146
146
148
150
151
151
151
152
152
152
154
154
155
155
156
157
157
160



Accessing Low-Level Data Using Work Areas 161

Opening a Data File 162
Closing a Data File 163
Checking for an SQL Table 163
Adding a Record 164
Deleting the Current Record 165
Reading a Field Value 165
Checking the Current Record Number or Record ID 166
Changing a Field Value 166
Unlocking a Record 167
Creating a Subset of Records 168
Limiting Search Scope 168
Performing a Sequential Search 169
Moving to the First Record Match 170
Setting the Current Index Tag 171
Positioning the Record Pointer 171
Moving to a Specified Record 172
Moving to the First Record 173
Moving to the Previous or Following Record 174
Moving to the Last Record 174
Seeking a Record 175
Reading a Field Value 176
Replacing a Field Value 176
Updating Sync Logs 177
Updating the Sync Log File 179
Importing a Prepared TLog Import File 180
Getting a New Record ID 180
Converting the Sync Stamp 181
Using MSXML to Handle GoldMine APl XML 182
Getting Started 182
Defining the Root Element 182
Setting Attributes 182
Referencing an Attribute 183
Creating Child Elements 183
Executing the XML Document 184
Reading the Results 185

Reading the Code Attribute 185




Reading the Returned Data 186

Accessing the Current GoldMine Instance with COM 187
Getting Started 188
Executing Commands 188
Logging In to GoldMine 188
GoldMine.Ul Class 189
Accessing Data Files 189
Adding an Empty Record 189
Parameters 190
Return Value 190
Closing an Opened File 190
Deleting the Current Record 191
Creating a Subset of Records 191
Checking for an Xbase or SQL Table 192
Moving to a Specified Record 192
Opening a Data File 194
Limiting GoldMine Search Range 195
Reading a Field Value 196
Checking the Current Record Number or Record ID 197
Changing a Field Value 198
Performing a Sequential Search 199
Unlocking a Record 200
Accessing Contact Records 200
Linking GoldMine Fields with an External Application 200
Accessing Specialized GoldMine.Ul Functions 205
Retrieving a List of Active Plug-Ins (GoldMine 7.0 or higher) 205
Running a Plug-In (GoldMine 7.0 or higher) 206
Retrieving Login Credentials for Use with the GMXS32.DLL 206
Retrieving the ReclD of the Current Opportunity 207
Completing a Calendar Activity 208
Displaying Edit Windows for Calendar and History Items 209
Displaying the Contact Record of an Incoming Caller 209
Running a Counter 211
Returning GoldMine Record Data 212
Processing a Web Import Instruction File 217
Reading an Xbase Expression Without Opening a File 217

Adding Merge Fields to a Form 218




Deleting Fields from a Form

Closing a Form Profile

Creating an Xbase File with Registered Fields

Returning a Field Name for an Expression
Returning a Value for Unattached Fields

Counting the Number of Exported Records

FormPrintedDoc

Creating a History Record

Creating or Updating a Document Link

Displaying a Message Dialog Box

Adding a Merge Form

Playing a Toolbar Macro

Creating and Sending a Pager Message

Displaying a Message in the GoldMine Status Bar

Converting TLog Timestamps

Updating the Sync Log File

Importing a Prepared TLog Import File

Forcing Logout

Reading Security and Rights

Macros

Executing Macros

Available Data-Related Macros

Macros for Merge Forms

Macros for the GoldMine License

Controlling the GoldMine User Interface

Getting Window Information

Registering for Events

Handling GoldMine.Ul Events

Manipulating Controls Programatically

Executing a Menu Command

Opening a Mail Record

GoldMine.RecObj Class

GoldMine.GMSystemEvents Class

Business Logic Methods

Business Logic Functions and Name/Value Pairs

Controlling Database Session Handling

218
218
219
220
220
220
221
221
222
223
225
226
228
228
229
229
230
231
231
234
234
234
241
242
243
243
246
251
255
262
266

266
267
268

268
269



Creating or Updating a Contact Record 270

Updating an E-mail Address 271
Updating a Web Site Record 272
Updating Notes of a Primary Contact Record 272
Creating or Updating an Additional Contact Record 273
Creating or Updating a Detail Record 274
Creating or Updating a Linked Document 275
Creating or Updating a Referral 276
Creating or Updating Activities 277
Creating or Updating a History Record 281
Attaching an Automated Process 282
Executing an SQL Query 282
Creating a Contact Group 283
Adding Contacts to a Contact Group 284
Using AddContactGrpMembers 285
Reading a Record 286
Reading a Contactl or Contact2 Record 287
Returning Alerts Attached to a Contact Record 288
Attaching an Alert 289
Returning All Alerts 289
Returning a User List 290
Returning a User Group Member List 290
Returning Group Memberships for a Specified User 291
Saving a User Group 291
Retrieving the Names of User Groups 291
Evaluating an Xbase Expression on a Contact Record 292
Encrypting Text 293
Decrypting Encoded Text 294
Retrieving the Default Contact Automated Process 294
Deleting Calendar Items 295
Deleting History Items 295
Handling GoldMine Security 296
Creating a New GoldMine Login 296
Reading a GoldMine Login 296

Retrieving Security Access 297




Retrieving Field-Level Access Rights 298

Retrieving Visible Fields 298
Checking for Record Curtaining 300
Generating a Remote License File 300
Removing a Remote License 301
E-mail Name/Value Functions 301
Reading a Mail Message 301
Queuing a Message for Delivery 304
Updating a Mail Message 306
Saving a Mail Message into GoldMine 306
Deleting a Message 307
Filing a Message in History 307
Preparing the NV Container for a New Mail Message 308
Preparing the NV Container to Reply to a Mail Message 309
Preparing an NV Container to Forward a Mail Message 309
Adding an E-mail Center Folder 310
Deleting an E-Mail Center Folder 311
Obtaining a List of E-Mail Center Folders 311
FromList 312
Accessing E-mail Templates 312
Retrieving E-mail Account Information 313
Retrieving a List of Messages Waiting Online 314
Retrieving Messages 316
Deleting Online E-mail Messages 317
Return Name/Value Pairs 317
Saving a Manual List of Recipients 318
Retrieving a Manual List of Recipients 318
Managing Internet E-mail Preferences 318
Validating a Web User Name and Password 323
Manipulating User-Defined Fields and Views 324
Reading All Field Views 324
Deleting a Contact View 326
Creating or Modifying a Contact View 327
Reading Custom Fields 329

Modifying the Structure of Custom Fields 330




Working with GoldMine Plug-ins

Security and Plug-in Directories

Sample Plug-ins

Reading Calendar Preferences

Modifying Calendar Preferences

Reading Personal Preferences

Updating Personal Preferences

Reading Record Preferences

Updating Record Preferences

Reading Schedule Preferences

Updating Schedule Preferences

Reading Alarm Preferences

Updating Alarm Preferences

Reading Lookup Preferences

Updating Alarm Preferences

Reading Pager Preferences

Updating Pager Preferences

Reading Miscellaneous Preferences

Updating Miscellaneous Preferences

Reading the Database Engine Type (7.0 or higher)
Reading a List of GoldMine User Groups

Creating or Updating GoldMine User Groups

Adding a GoldMine User to a Group

Removing a GoldMine User from a Group

Creating or Updating an Opportunity or Project

Using ActiveX Plug-in Support

Using HTML Plug-in Support

Plug-In Description File

HTML Plug-in Description File

ActiveX Plug-in Description File

Security

Adding a Local Plug-in Directory

gmail.gme

External.gme

331
336
341
342
343
344
345
345
346
347
348
348
349
350
350
351
352
352
353
353
354
354

357
357
358

358
358
360

362
363
363

363
364
364



gmplus.asp

Using Xbase Expressions

Function/Parameter Types

Conditionals, Operators, and Logical Evaluators
Conditionals

Operators

Logical Evaluators

Xbase Functions

String Functions

Date Functions

Numeric Functions

Miscellaneous Functions

Xbase Database Structures

CAL.DBF

CONTACT1.DBF

CONTACT2.DBF

CONTGRPS.DBF

CONTHIST.DBF

CONTSUPP.DBF

INFOMINE.DBF

LOOKUP.DBF

MAILBOX.DBF

OPMGR.DBF

PERPHONE.DBF

RESITEMS.DBF

SPFILES.DBF

SQL Database Structures

CAL Table

CONTACT1 Table

CONTACT2 Table

CONTGRPS Table

CONTHIST Table

CONTSUPP Table

INFOMINE Table

365
369
370

370
371
372
373

374
374
378
380
382

383
384
385
388
389
389
391
392
393
394
395
396
396
397

399
400
401
404
405
406
407
408



LOOKUP Table 409

MAILBOX Table 409
OPMGR Table 410
PERPHONE Table 411
RESITEMS Table 412
SPFILES Table 412
Appendix: Code Examples 415
GMXS32.DLL Code Examples 415
C++ Examples 415
Function prototypes 415
Logging In 419
Creating a Contact with Business Logic/ Enumerating a Name Value
Container/DataStream 419
Low-Level Work Area 421
Visual Basic Examples 422
Function prototypes 422
Logging In 426
Creating a Contact 426
Enumerating a Container 426
DataStream 427
Low-Level WorkArea 427
Delphi Examples 429
Function prototypes 429
Creating a Contact 433
Enumerating a Container 433
DataStream 434
Low-Level Work Area 434

General Index 437







About this Manual

This manual provides information for administrators who are integrating with
GoldMine. Other product documentation, available on the installation CD or from
support.frontrange.com, provides comprehensive information about GoldMine
features and functionality. These resources contain information about:

¢ Using GoldMine to automate your daily business activities.

e Configuring GoldMine to meet your organization’s
information and communications needs.

e Working with technical aspects of GoldMine, including
GoldMine data structure and organization, programming
expressions, GoldMine third-party program interface, and
troubleshooting.

For procedures and technical information about setting up the GoldMine remote
synchronization enhancement GoldSync, see the GoldSync Administrator’s Guide.
This guide is available as a .PDF file at the GoldMine Web site at
www.frontrange.com.

The documentation contains references to some Windows-related functionality, such
as explanations for basic mouse functions; however, detailed instructions for how to
use Windows are beyond the scope of this manual. For more information about
Windows, see your Windows 95/98 /2000 documentation or related references.

Style Conventions used in this Manual

Integrating with GoldMine uses special symbols and conventions, which are
categorized as print conventions, general conventions, and mouse conventions in the
following sections.

Print Conventions

Print conventions used throughout this manual provide a consistent way of
representing screen displays, command entries, and keyboard characters viewed
while working with GoldMine.


http://www.frontrange.com

Screen
ltems

Command
Entries

Keyboard
Keys

New Terms

Q

A\

Menu items, dialog boxes, and field names are printed in a bold typeface
similar to the typeface displayed in GoldMine onscreen displays. For
example, the option to toggle the status bar display appears in print as Status
Bar. In general, any text that appears on the screen is printed to look like the
screen display.

Commands or other keystroke strings entered by the user are printed in a
monospaced typeface that shows exact spacing between terms.

References to keys on your PC keyboard are printed as graphic characters
that match the actual keys on your keyboard. For example, the Enter key
appears as e. Commands that require combination keystrokes—that is,
holding down one key while pressing another—are connected by a hyphen (-
). For example, to access the File menu from your keyboard, press a-F.

New terms are printed in bold italics.

Notes appear throughout the manual to provide additional information on a
topic, such as indicating a procedure that must have been completed before
performing the current procedure. Notes can also call attention to critical
information or important technical details. These notes are identified by the
light bulb symbol and delineated by borders.

Online or print references are listed to provide additional information for
topics. These references are identified by the symbol shown at left and
delineated by borders.

Cautions appear before procedures or other directions that can cause
equipment or data damage if not followed exactly as written. Cautions are
identified by the symbol shown at left and delineated by borders.

General Conventions

General conventions used throughout this manual provide a consistent way of
referencing individual or multi-step actions.

Select refers to executing commands that are available as menu options or making a
choice among available items from a browse window or a drop-down list.

Steps that involve two or more selections from a menu may be presented as a
combination selection; that is, the menu options are presented in sequence, divided
by |. For example, when you read

“To schedule an appointment, select Schedule|Appointment”



select Schedule on the Main Menu to display a drop-down list, from which you can
select Appointment.

Performing Schedule
an action described in Cal..
aprocedure Hext Action...

T

Literature Request... Select the Appointment command
Forecasted Sale... from the Schedule drop-down menu

Other Action...
Ewent...
To-do...

Goldrine E-mail...

Mouse Conventions

If you use a multiple-button mouse with GoldMine, the left mouse button is
configured as the primary mouse button. The right mouse button serves as the
secondary button.

The following terms describe mouse actions referenced throughout this manual.

Point Position the mouse pointer until the tip of the pointer rests on the desired area of
input on the screen, such as an option on a pull-down menu.

Click Press and immediately release the left mouse button without moving the mouse.
For example, click OK indicates that you must click the OK button with the mouse.

Right-click Press and immediately release the right mouse button without moving the mouse.

Double-click Click the left mouse button twice in rapid succession.

Drag Click and hold the left mouse button while moving the mouse pointer.






Introduction to
Integrating with GoldMine

Integrating with GoldMine is designed as a comprehensive resource for developers
to integrate GoldMine with their applications. For best results, we recommend that
you become an experienced GoldMine user before taking on an integration project.
For example, understanding what types of data are better stored as a detail record
instead of a history record will ensure greater success for your project.

In addition to gaining experience with GoldMine, you should be familiar with the
development environment you plan to use. This manual may not provide
programming examples for your preferred development environment. With a good
working knowledge of your chosen programming language, you could learn from
another language’s examples.

This manual provides information to:
e Use one of several methods to integrate with GoldMine.

o  Work with either Xbase or SQL database structures to
integrate with GoldMine up to version 6.7.

o  Work with either Firebird or MSSQL database structures to
integrate with GoldMine version 7.0.

e Access a variety of support resources to get help from other
developers and GoldMine technicians.

21



Integrating With GoldMine

Methods of Integrating with GoldMine

There are five general methods for integrating with GoldMine:
¢ Dynamic Data Exchange (DDE)
e GMXS32.DLL
e GMXMLAPILDLL
e GoldMine COM Server
¢ GoldMine Plug-ins (GoldMine 7.0 or higher)

¢ Database engine

Integrating via Dynamic Data Exchange

This method is supported by many programming environments, such as C++,
Delphi, Visual Basic, VBA (Office 97 — Access, Word, and Excel), WordBasic, FoxPro,
and many others. DDE commands can be sent to GoldMine to make GoldMine
perform a large variety of functions.

Integrating via GMXS32.DLL

You can also integrate with GoldMine using the GMXS32.DLL (The X represents the
main version of GoldMine being used (i.e., 6 for GoldMine 6.0). Using the DLL

method, you can access or maintain your GoldMine data without running
GoldMine.

This DLL has enough functions for data access and synchronization maintenance to
allow nearly full control of all databases and their fields. High-level “business logic”
functions streamline and simplify performing common tasks, such as adding a
contact, scheduling an activity, and so forth. GMXS32.DLL is placed into your
Windows\ System directory, and is updated automatically when you update
GoldMine. This DLL does not require a separate license to use.

This method of integration is highly recommended as it automates the task of
adhering to GoldMine business logic rules, security, and synchronization.

Integrating via the GoldMine XML APl (GMXMLAPI.DLL)

Another integration method, introduced in GoldMine 6.7, is the GoldMine XML APL
This DLL allows the programmer to pass the GoldMine API an XML document to
integrate with GoldMine. This API is another access method to the high-level
business logic methods and the lower level data functions. The XML APl is a COM
object that can easily be used in various programming languages, including in the
development of web applications. Using the versatile XML standard, integrating
with GoldMine has never been easier.

22



Integrating With GoldMine

Interacting with GoldMine via the GoldMine COM Server

With the release of GoldMine 6.7, a new method of interacting with a running
GoldMine was introduced, the user-interface API. GoldMine is now a COM server.
This method of interaction with GoldMine replaces the DDE functionality. DDE is
still present in GoldMine for legacy integrations, but the new improved COM server
capability adds a wealth of functionality that enables the programmer to control the
GoldMine user-interface like never before. In addition, accessing GoldMine as a
COM server is much easier than DDE in a .Net programming environment.

Integrating via GoldMine Plug-ins

GoldMine 7.0 contains a new mechanism to support ActiveX controls and HTML
based integrations as if they were a part of GoldMine. These structures allow for
rapid integration, ease of use, and security.

Integrating via a Database Engine

The most difficult method of integration involves writing to GoldMine databases via
a database engine. Using this method also involves some work with DLL or DDE to
keep GoldMine synchronization information intact. We do not recommend using
this method because there is a higher likelihood of incorrect implementation, which
could damage GoldMine data.

(EP For best results, do not integrate via a database engine.

Comparing Integration Methods

The following table summarizes the integration methods and whether they require
loading the Borland Database Engine, if GoldMine needs to be running, and if they
require a GoldMine seat. Use this table to help determine the integration methods
that best suits your application needs.

Note: As of GoldMine Version 7.0, the Borland Database Engine is no longer used.
References to BDE in the following table apply to integrations developed in
GoldMine Version 6.7 or lower.

APl Method Requires | Requires Uses | Best used for

BDE to GoldMine seat?
be to be
loaded? | running?

GMXS32.DLL Yes No No Perhaps highest speed, broad range of

functionality

No Yes No Minimal coding, slow speed, less
functionality, only way in older GoldMine’s
of interfacing with GoldMine user
interface

GoldMine COM Server No Yes No Used for interacting with GoldMine user

23




Integrating With GoldMine

(GoldMine.Ul, interface and also provides lower level
GoldMine.RecObj, & functions. DDE replacement with much
GoldMine.SysEvents enhanced user interface control.
Requires GoldMine to be running.
GoldMine COM Server No Yes No Broader range of functionality with
(GoldMine.GoldMineData) business logic and lower level functions.

Does not require BDE to be loaded.
Alleviates SharedMemLocation errors
commonly found with the GMXS32.DLL.

GMXMLAPI.DLL Yes No Yes Provides same functionality as the
GMXS32.DLL, but provides easier XML
interface

GoldMine Plug-ins No Yes No Provides a platform for developing

GoldMine applications. Supports
integrations developed using ActiveX
Controls or HTML. Very powerful when
used in conjunction with GoldMine APIs.

Direct Access through No No No NOT RECOMMENDED!!

data engine (ex. ADO) Does not respect GoldMine security,
does not automatically log
synchronization information, does not
have functionality to generate
AccountNo’s or Recid’s, does not return
encrypted GoldMine data in a readable
format, requires intimate knowledge of
GoldMine data rules.

Resources and Support

In addition to this manual, FrontRange Solutions provides a variety of free resources
to support developers, including:

e API/Programming topics on the FrontRange Forum
e Open Developer Community
e Technology Partner Program

For specific questions and additional information, go to the FrontRange Solutions
Community Forum at: http://forums.frontrange.com

Experienced developers can offer advice or programming help. The newsgroup also
contains advanced or hard-to-find information. This newsgroup is a self-serve
resource and is not monitored or contributed to by FrontRange Solutions Inc.

Open Developer Community

This online self-service resource provides technical documents, code samples,
development tools, the most up-to-date documentation, and a searchable
knowledgebase containing integration information.

24



http://forums.frontrange.com

Integrating With GoldMine

To register for the Open Developer Community, go to:
http://www.frontrange.com/pavilion/developerprograms.asp

Technology Partner Program

The FrontRange Solutions Certified Technology Partner Program is intended for
developers who wish to create and market products that integrate with our
GoldMine and HEAT products. These partners seek a close development, marketing,
and sales relationship with FrontRange Solutions Inc.

Members of the Certified Technology Partner Program pay an annual fee and receive
additional benefits over the Open Developer Community, including;:

e Certification of your integrated solution (additional fees may
apply for multiple certifications)

e Use of GoldMine and HEAT Technology Partner logos to
promote your product

e Listing on the FrontRange.com website
e Right to participate in beta programs

e Not-for-resale (NFR) licenses of GoldMine and HEAT
products

e Discounted product training
e Free and fee-based marketing programs

For more information regarding the Technology Partner Program, go to:
http://www.frontrange.com/pavilion/developerprograms.asp

Integration Tools
The following tools can help greatly when integrating with GoldMine:

DDEREQUESTOR:

A Windows-based freeware that allows you to send DDE commands to GoldMine in
real-time. This utility can help to diagnose problems you may have when using DDE
to integrate with GoldMine.

XMLSPY

A development environment for modeling, editing, debugging, and transforming all
XML technologies, then automatically generating runtime code in multiple
programming languages.

Technical support for these programs is not available from FrontRange Solutions.

25






Working with Dynamic
Data Exchange (DDE)

Dynamic Data Exchange (DDE) is the term for the Windows functionality that allows
GoldMine to exchange commands and information with other applications. Using
DDE, one application, referred to as the client application, can request information
from or send commands to another application —referred to as the server application.
The server application then processes the request from the client application. In
response to a client’s request, the server performs a task such as updating or
returning data housed by the server application

GoldMine is designed to act as both a DDE client as well as a DDE server. DDE
topics included in this chapter describe using GoldMine as a DDE server. These
topics are provided for programmers who wish to interface their programs with
GoldMine. If you are not familiar with working with DDE, this technical section may
be of limited value to you.

27






Integrating With GoldMine

Using DDE in GoldMine

GoldMine can perform a variety of tasks using DDE commands, including;:
e Merging data into a document
e Updating database information
¢ Querying for data
e Identifying telephone numbers automatically
e Linking contact records to an accounting application

e Inserting incoming e-mail

Merging Data into a Document

GoldMine uses DDE to communicate with your word processor. When you perform
a merge, GoldMine uses DDE to send contact information to the word processor of
the selected document template. The word processor receives this information from
GoldMine, places the information from the contact record in appropriate places in
the document, and then prints the document.

GoldMine acts as a DDE client and a DDE server during the document merging
process. First, GoldMine must send a DDE request to the word processor to request
that the word processor open a particular document template. Once the document is
open, the word processor will recognize that the document contains DDE linkage
fields and will ask GoldMine for data to place in these fields. GoldMine, now acting
as a DDE server, will return this information to the word processor, and the word
processor will update its display with the information. Finally, the document can be
printed.

This type of merging can also be performed with other Windows applications, such
as spreadsheets (for example, Microsoft Excel) or database programs (for example,
Microsoft Access).

Updating Database Information

DDE can also be used to update GoldMine databases from another application. For
example, a magnetic card reader application that supports DDE can be interfaced
with GoldMine in such a way that new contact records are automatically entered into
the contact database. Therefore, whenever a trade show attendee’s badge is swiped
through the reader, GoldMine is automatically updated.

29



Integrating With GoldMine

Querying for Data

The DDE macros and other functions can query the GoldMine tables and return the
contents to the caller. The [DataStream] command is a high-performance feature that
can return large blocks of data very quickly. Retrieving data from large databases
may take longer, causing your DDE request to time-out.

Identifying Telephone Numbers Automatically

GoldMine DDE functionality can be used with CallerID or ANI equipment to
automatically identify incoming telephone calls. GoldMine can display the contact
record that matches the telephone number of the incoming call, saving the user time
in looking up the caller.

Linking Contact Records to an Accounting Application

DDE applications can be created to automatically transfer prospect information to an
accounting application when the prospect decides to purchase, saving data entry
time and reducing errors.

Inserting Incoming E-mail

DDE can be used to insert incoming e-mail into GoldMine, allowing GoldMine users
to remain linked with their external e-mail systems.

Linking GoldMine to MS Word for Windows

EP

The GoldMine DDE interface works with any Windows application that supports
DDE; however, every application uses a unique format for executing DDE calls and
for responding to DDE requests. Explaining all of the various methods to use DDE is
beyond the scope of this manual. Instead, this document explores the use of DDE
between GoldMine and another popular Windows application, Word 97 for
Windows. The examples presented should provide a framework for creating DDE
links to other applications.

For details on installing the GoldMine DDE link to Word for Windows, see related
material at support.frontrange.com.

Entering Application, Topic, and Item Names

To establish a DDE conversation with an application that supports DDE, you must
know the application’s service name. The GoldMine service name is GoldMine.

30



Integrating With GoldMine

GoldMine supports two service topics:

e SYSTEM: Queries a DDE server on supported data formats—
for more information, see your Microsoft DDE documentation.

e DATA: Accesses all GoldMine DDE functions.

Specific GoldMine DDE functions are accessed by passing a DDE item string to
GoldMine. The item can be a macro, a command, or an expression.

DDE Parameters, Functions, Expressions, Macros

Service Topic Item
GOLDMINE SYSTEM <item>
GOLDMINE DATA &<macro>
GOLDMINE DATA <expression>
GOLDMINE DATA [<function>]

GoldMine DDE functions can process a variety of tasks, including database query
and manipulation. Commands are always passed surrounded by brackets. DDE
functions are listed in “Working with DDE Functions” on page 33.

GoldMine can evaluate Xbase expressions by passing the expression as a DDE
function call. For example, the expression CONTACT1->CONTACT will return the
contact name of the current contact record displayed in the currently active contact
record.

When a DDE item begins with an ampersand (&), GoldMine assumes that this item is
a macro, and performs a lookup into an internal macro expansion table. If a match is
found, GoldMine evaluates the macro and returns the result. For a list of GoldMine
DDE macros and their functions, see “DDE Macros” on page 80.

Establishing a DDE Conversation

The following example illustrates using Visual Basic for Applications (VBA) to
establish a DDE conversation.

ch = DDElnitiate("GOLDM NE", " DATA")

The DDEINITIATE function is used to establish the DDE link. The first parameter is
the GoldMine service name; the second parameter is the service topic on which this
DDE conversation is based. If the call is successful, the function returns a nonzero
channel number to be used for all subsequent DDE requests to that channel. This
channel number should not be confused with the work area pointer that GoldMine
uses for many DDE functions.

If the DDEINITIATE function returns 0, the conversation could not be established.

Note that the examples within this chapter are written in Visual Basic for
Applications, and the DDElInitiate and DDERequest functions are not a part of
Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. The following example illustrates how the DDE conversation is initiated
and requests are made in Visual Basic 6.0. The code can be written into a form that
never gets displayed (only loaded) and be included in any of your VB projects.

31



Integrating With GoldMine

To initiate a DDE conversation:

Public Function DDElnitiate() As Integer

On Error GoTo Err_DDE

Wth txt GVDDE
. Li nkMode = vbLi nkNone
. Li nkTopi ¢ = "Gol dM ne| Dat a"
. Li nkMode = vbLi nkManual

End Wth

DDElnitiate = 1
Exit Function
Err _DDE:

If Err = 282 Then
DDEl nitiate = 282

El se
Err.Description = "DDE Error:" & Err & " :" & Err.Description
DDElnitiate = 0

End If

End Function

To request data:
Publi ¢ Functi on DDERequest (sExpr As String) As String

Wth txt GVDDE
.Linkltem = sExpr
. Li nkRequest
DDERequest = . Text
End Wth

End Function

With these functions declared in your project, you may then call them where needed
in your code.

32



Integrating With GoldMine

Working with DDE Functions

GoldMine supports a variety of DDE functions, which are described in this section.
Each function description includes calling format, description of operation, and an
example of a VBA subroutine using the function.

GoldMine DDE functions allow access to other files or functions. Three categories of
DDE functions provide access to the following:

e Data files
e Records
e Specialized functions

Depending on the type of application involved, you would typically select one of
these three access methods; however, you can mix all three access methods within
the same application. The function categories are described on the following pages.

Accessing Data Files

GoldMine provides a complete set of DDE functions that allow low-level access to
the data files. These functions allow you to:

e Open particular data files,
¢ Query the values of the fields in the records in the data files,
e Add records to the files, and
e Replace data in the records.
This suite of functions is usually used for database applications that need varied

access to GoldMine data.

Adding an Empty Record

Syntax [APPEND(<work area>)]

The Append function is used to add an empty record to a GoldMine data file. Before
using Append, you must open a data file using the Open function. After executing
the Append function, the record pointer is positioned at the new empty record, and
the record is locked and ready to accept field replacements.

When a CONTACTT1 record is appended, GoldMine automatically propagates the
new record with the appropriate ACCOUNTNO and CREATEBY values. For all
other records, you must replace the ACCOUNTNO field with the value from the
CONTACT1 record with which the new record is to be linked. For records that
require remote synchronization initialization, GoldMine will automatically
propagate the value of the RECID field when these records are appended.

33



Integrating With GoldMine

Parameters

The Append function accepts one parameter, the work area handle of the file to
Append. The work area handle is returned by the Open file when the file is opened.

Return Value

Xbase: The Append function returns the record number of the new record, or 0 if the
file could not be locked.

SQL: The Append function returns the record ID.

EXAMPLE

The following example demonstrates how to add a contact record in GoldMine via
DDE.

Sub Mai n()
Dim sQ
Dim sWorkArea As String
Di m | Channel As Long
Dim sRet As String
sQ = Chr(34)
' Open a DDE channel
| Channel = DDElnitiate("GoldM ne", "Data")
sWor kArea = DDERequest (I Channel, "[OQpen(Contactl)]")
If sWrkArea <> "0" Then 'Database was opened
' Append a new record to Contactl
sRet = DDERequest (I Channel, "[Append(" + sWorkArea + ")]")
If sRet <> "0" Then ' Record was Appended
StatusBar = "New Record Added"
' Repl ace Conpany nane with "New Record"

sRet = DDERequest (Il Channel, "[Replace(" + sWrkArea + "," + sQ(34) +
"Conmpany" + sQ(34) + "," + sQ + "NewRecord" + sQ+ ")]")

If sRet = "1" Then

St atusBar = "Repl aced conpl ete”

El se

StatusBar = "Repl aced Fail ed"

End |f

"Unl ock and C ose the record
sRet = DDERequest (| Channel, "[Unlock(" + sWrkArea + ")1")
sRet = DDERequest (| Channel, "[d ose(" + sWirkArea + ")]")
El se
StatusBar = "Error Opening Contactl"
End If

End |f

' Term nate the DDE Channel

DDETer m nate (| Channel)

End Sub

34



Integrating With GoldMine

Closing an Opened File

Syntax [CLOSE(<work area>)]

The Close function is used to release a previously OPENed file when processing is
complete. When access is complete, a file must be CLOSEd to release memory used
by GoldMine to maintain database work areas.

PARAMETERS

The Close function accepts one parameter — the work area handle of the file to close.
The Open file returns the work area handle when the file is opened.

RETURN VALUE

The Close value returns 1 if the function was able to successfully close the work area,
0 if an invalid work area handle was passed.

EXAMPLE
See “Adding an Empty Record” on page 33.

Deleting the Current Record

Syntax [Delete(<work area>)]

The Delete function deletes the current record in the specified work area. The record
pointer is not advanced to the next record.

PARAMETERS

The Delete function takes one parameter — the work area value obtained from the
Open function.

EXAMPLE
DDERequest (I Channel, "[Delete(" + sWrkArea + ")]")

Creating a Subset of Records

Syntax [FILTER(<work area>,<expression>)]

The Filter function limits access to data in a GoldMine database by creating a subset
of records based on expression criteria.

PARAMETERS

The Filter function takes two parameters. Enclose each parameter in quotation marks
(“)-

The first parameter is the work area handle of the file that you want to read. The
Open function provides this value when the data file is opened.

The second parameter is a valid Xbase expression.

35



Integrating With GoldMine

To remove the filter from the database, use a Filter function with an empty string,
such as [FILTER(<work area>,"")].

EXAMPLE

This example will scan the current contact’s history for all activities completed by a
specific user. It works by first setting the Range of history to a specific contact via the
AccountNo. Once the range is set, the Filter is applied to “see” only records for a
specific user within that range.

Sub Main()

Di m | Channel As Long
Dim sRet As String

Dim sWorkArea As String
DimsQ As String

Di m sAccNo As String
DimsUser As String

Di m bECF As Bool ean

Di m Counter As I|nteger

"Initialize sone variabl es
Counter = 0
sQ = Chr (34)

' Get user input

sUser = I nputBox("Enter a Gol dM ne usernane bel ow. ")
' Uppercase and pad the usernane

sUser = UCase(Left$(sUser + " ", 8))

"Start DDE Conversation with Gol dM ne

| Channel = DDElnitiate("GoldM ne", "Data")

'CGet the current Account No

sAccNo = DDERequest (I Channel, "Contact 1->Account No")
"Open the ContHist file

sWor kArea = DDERequest (I Channel, "[Qpen(CONTHI ST)]")
"If WorkArea is valid then do our thing

I f sWorkArea <> "0" Then

"Set the hi/lo range to the Account No

sRet = DDERequest (I Channel, "[Range(" + sQ + sWorkArea + sQ + "," + sQ +
sAccNo + sQ + "," + sQ + sAccNo + sQ+ ", 33)]")

"Set the filter to only return natches where user is a match

sRet = DDERequest (| Channel, "[Filter(" + sQ + sWrkArea + sQ+ "," + sQ
+ "USERID="" + sUser + "'" + sQ+ ")]")

"Go to the Top record

sRet = DDERequest (| Channel, "[Mve(" + sQ + sWorkArea + sQ+ ", TOP)]")
"Determine if we have at | east one natch

If sRet <> "1" Then 'no matches

bEOF = True

El se ' W have at | east one match

36



Integrating With GoldMine

Do

"I ncrenment the counter
Counter = Counter + 1
'"CGo to the next record

sRet = DDERequest (| Channel, "[Mwve(" + sQ + sWrrkArea + sQ + "
SKIP)1")

"Deternmine if we have run out of matching records

If sRet <> "1" Then bECF = True

Loop Until BECF = True 'Loop until no nore nmatching records

End If

' Cl ose WorkArea

sRet = DDERequest (| Channel, "[d ose(" + sQ + sWorkArea + sQ + ")]")
‘"Display results

MsgBox (Str$(Counter) + " history records for this contact have a User =
"+ sUser + "'")

End |f

' Cl ose DDE channel

DDETer m nate (| Channel)
End Sub

Checking for an Xbase or SQL Table

Syntax [IsSQL (<work area>)]

The IsSQL function returns the table type (Xbase or SQL) that is open in a work area.
Using this DDE command, you can determine the most appropriate method to
retrieve information when working with DataStream —see “Returning GoldMine
Record Data” on page 58. For example, when your routine starts, you can open
Contactl and Cal, issue an IsSQL command to determine the GoldDir and
CommonDir database types, and then close both work areas. You can then send the
appropriate DataStream calls.

PARAMETERS
The IsSQL function takes work area as the only parameter.

RETURN VALUES
IsSQL returns 1 for an SQL database table, or 0 for an Xbase file.

Moving to a Specified Record

Syntax [MOVE(<work area>,<subfunction>,<scope>)]

The Move function will position the record pointer to a particular record in a data
file. Before using Move, you must open a data file using the Open function.

PARAMETERS
The Move function requires either two or three parameters.

37



Integrating With GoldMine

The first parameter is the work area handle of the file whose record pointer you
want to position. The Open function provides this value when the data file is

opened.

The second parameter is the name of the Move subfunction that you want to

perform.

Depending on the subfunction, a third parameter can be required.
The following table lists the Move subfunctions and the requirements for the third

parameter:
Valid Move Subfunctions

Subfunction Description 3rd Parameter

TOP Move to first logical record Not required

BOTTOM Move to last logical record Not required

SKIP Skip records Optional, records to skip

GOTO Go to a specific record Record number (Xbase), Record ID (SQL)

SEEK Seek a specific record by key | Search key value

SETORDER Select an index Index name

Top Positions the record pointer at the first logical record according to the current index
order. For example, if the data file open in the selected work area is CONTACT1.DBF,
and the index order is set to Company, a call to TOP will result in the record pointer
being positioned at a record with a company name, such as AAA Cleaners.

Bottom Positions the record pointer at the last logical record according to the current index
order. For example, if the data file open in the selected work area is CONTACT1.DBF,
and the index order is set to Company, a call to BOTTOM wiill result in the record
pointer being positioned at a record with a company name, such as Z-best Bakery.

Skip Moves the record pointer record by record. If SKIP is called without the third
parameter, it will move the record pointer to the next logical record according to the
current index order. If SKIP is called with a string numeric as the third parameter, the
record pointer will be moved forward by the indicated number if the value is positive, or
backward if the value is negative. Negative numbers must be passed in quotation
marks, for example “-1”.

Goto Positions the record pointer at the record number (Xbase) or record ID (SQL) specified
by a string numeric passed as the third parameter.

Seek Attempts to locate a record in the data file with an index key that matches the string
passed as the third parameter. Partial key searches are allowed; GoldMine will
position the record pointer at the record with the key that most closely matches the
passed value.

Setorder Selects an active index for ordering and SEEKing the data file. See “Database

Structures” on page 383 for the appropriate values and collating sequence for each
data file index.

38




Integrating With GoldMine

(\F If an invalid index is selected for the data file, none of the MOVE subfunctions will
operate properly.

RETURN VALUE
The Move function can return several values.

Move Return Values

Return Description

0 Error occurred

1 Record pointer successfully moved, or index selected

2 Exact match not found, pointer positioned at closest match
3 Record pointer positioned at end-of-file (EOF)

4 Record pointer positioned at beginning-of-file (BOF)

An error can be returned under any of the following conditions:
e Invalid work area handle is passed to the function.
e Invalid subfunction is passed.
e Out-of-range record number is passed.

e Nonnumeric value is passed as a third parameter when a
numeric value is expected.

EXAMPLE
The following example will open Contactl, perform various Move operations, and
display the resulting contact name between Moves.

Note that the example below is written in Visual Basic for Applications, and the
DDElnitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Main()

Di m | Channel As Long
Dim sWrkArea As String
DimsRet As String
Dimi X As |nteger

Di m sSeekVal As String
DimsQ As String

sQ = Chr (34)
| Channel = DDElnitiate("GoldM ne", "Data")
sWor kArea = DDERequest (| Channel, "[OQpen(Contactl)]")

'CGoto Top of Database
sRet = DDERequest (| Channel, "[Mve(" + sWrkArea + ",Top)]")

39



Integrating With GoldMine

MsgBox (" Top: Contact=" + DDERequest (| Channel, "[Read(" + sWrkArea + ",
Contact)]"))

"Skip forward 1 record
sRet = DDERequest (| Channel, "[Mwve(" + sWrkArea + ", SKIP)]")

MsgBox ("SKI P: Contact=" + DDERequest (Il Channel, "[Read(" + sWrkArea + ",
Contact)]"))

"Skip X record (x=5)

iX=5

sRet = DDERequest (I Channel, "[Mwve(" + sWorkArea + ",SKIP," + Str(iX) +
"))

MsgBox ("Skip 5: Contact=" + DDERequest (Il Channel, "[Read(" + sWrkArea +
", Contact)]"))

' Goto Bottom of Database
sRet = DDERequest (| Channel, "[Mwve(" + sWrkArea + ", Botton)]")

MsgBox ("Bottom Contact=" + DDERequest (Il Channel, "[Read(" + sWrkArea +
", Contact)]"))

"Skip back 1 record (Note: the -1 nust be enclosed in quotes)
sRet = DDERequest (| Channel, "[Move(" + sWrkArea + ", Skip, " + sQ+ "-1"

+sQ+ ")]")
MsgBox ("Skip -1: Contact=" + DDERequest (|l Channel, "[Read(" + sWorkArea +
", Contact)]"))

'Goto Record 10
sRet = DDERequest (| Channel, "[Mwve(" + sWrkArea + ", CGoto, 10)]")

MsgBox (" Goto: Contact=" + DDERequest (| Channel, "[Read(" + sWrkArea + ",
Contact)]"))

' Seek for a Company

sRet = DDERequest (| Channel, "[Mve(" + sWrkArea + ", SetOrder, 16)]")
sSeekVal = UCase( | nputBox("Enter a Conpany to search for"))

sRet = DDERequest (I Channel, "[Mve(" + sWrkArea + ",Top)]")

sRet = DDERequest (| Channel, "[Move(" + sWrkArea + ", Seek, " + sQ +
sSeekVal + sQ + ")]")

MsgBox (" Seek: Contact=" + DDERequest (| Channel, "[Read(" + sWrkArea + ",
Contact)]"))

ret = DDERequest (| Channel, "[C ose(" + sWrrkArea + ")]")
DDETer m nate (| Channel)
End Sub

Opening a Data File

Syntax [OPEN(<tablename>)]

The Open function is used to open a GoldMine data file for processing by another

40



Integrating With GoldMine

application. This function must be called before calling any GoldMine DDE
functions that work with an individual data file. It is not necessary to use this
function when calling the RecordObj function, because this function opens the
necessary data files automatically.

41



Integrating With GoldMine

PARAMETERS

The Open function takes one parameter —the name of the file to open. The following
values are valid for this parameter:

Open Valid Parameters

File Description

CAL Calendar activities file
CONTACT1 Primary contact information file
CONTACT2 Primary contact information file
CONTGRPS Groups file

CONTHIST History records file
CONTSUPP Supplementary records file
INFOMINE InfoCenter file

LOOKUP Lookup file

MAILBOX E-mail Center mailbox file
OPMGR Opportunity Manager file
PERPHONE Personal Rolodex file
RESOURCE Resources file

SPFILES Contact files directory

RETURN VALUE

The Open function returns an integer value representing the handle to the file’s work
area. This value is required for all subsequent access to the file. If the file could not
be opened, or an invalid parameter is passed, the function will

return 0.

EXAMPLE
See “Adding an Empty Record” on page 33.

Limiting GoldMine Search Range

Syntax [RANGE(<work area>,<minimum>,<maximum>>,<tag>)]

The Range function activates the index in a table and sets a range of values to limit
the scope of data that GoldMine will search.

PARAMETERS
The Range function requires four parameters.

The first parameter is the work area handle of the file that you want to read. The
Open function provides this value when the data file is opened.

The second parameter is the minimum value of the range. Enclose this parameter in
quotation marks ().

42



Integrating With GoldMine

The third value is the maximum value of the range. Enclose this parameter in
quotation marks (“).

The fourth value is the tag that corresponds to the index file. For details about tags,
see “Database Structures” on page 383.

EXAMPLE
See “Creating a Subset of Records” on page 35.

Reading a Field Value

Syntax [READ(<work area>,<field>)]

The Read function is used to query a data file for the value of a field. Before using
Read, you must open a data file using the Open function. In addition, you will
probably want to position the record pointer to the record you want to query by
using the Move function.

PARAMETERS
The Read function requires two parameters.

The first parameter is the work area handle of the file that you want to read. The
Open function provides this value when the data file is opened.

The second parameter is the name of the field in the data file whose value you want
to query. You will normally pass only a single field name, such as CONTACT as the
second parameter. However, if you pass a field expression, such as “COMPANY +
CONTACT” GoldMine will attempt to evaluate the expression and return the value of
the expression. When an expression is passed as the second parameter, the
expression must be surrounded by quotation marks.

RETURN VALUE

The Read function returns a character string containing the value in the specified
field, or the value of the specified expression. If an error occurs, the Read function
returns a null string. The error could be caused by an invalid work area handle, an
invalid field being passed, or an expression that GoldMine could not evaluate.

EXAMPLE
See “Moving to a Specified Record” on page 37.

43



Integrating With GoldMine

Checking the Current Record Number or Record ID

Syntax [RECNO(<work area>)]

Xbase: RecNo function is used to determine current record number position.

SQL: RecNo function is used to determine the record ID.

PARAMETERS
The RecNo function accepts one parameter — the work area handle of the file. The
work area handle is returned by the Open file when the file is opened.

RETURN VALUE
The RecNo function returns the current record number position, 0 if an invalid work
area handle was passed.

EXAMPLE

The following example will get the current Contactl RecNo and display it in the
GoldMine status bar.

Note that the example below is written in Visual Basic for Applications, and the
DDElnitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Mai n()

Di m | Channel As Long
Dim sWorkArea As String
Dim sRet As String

Dim sRecNo As String
DimsQ As String

sQ = Chr (34)
| Channel = DDElnitiate("GoldM ne", "data")
sWor kArea = DDERequest (| Channel, "[OQpen(Contactl)]")

sRecNo = DDERequest (| Channel, "[RecNo(" + sWorkArea + ")]")
sRet = DDERequest (| Channel, "[C ose(" + sWirkArea + ")]")
sRet = DDERequest (| Channel, "[StatusMsg(" + sQ + "RecNo=" + sRecNo + sQ +

")1")
MsgBox (" Gol dM ne's status bar should now display the RecNo ")
End Sub

44



Integrating With GoldMine

Changing a Field Value

Syntax [REPLACE(<work area> <field>,<value>,<append>)]

The Replace function is used to change the value in a particular field in one
GoldMine data file. Before using Replace, you must open a data file using the Open
function. In addition, you will probably want to position the record pointer to the
record you want to change either by using the Move function, or by adding a new
record with the Append function.

After executing the Replace function, GoldMine will update the specified field with
the new value, and update the appropriate remote synchronization data structures
to indicate that the field was changed.

In a network environment, GoldMine automatically locks the record before
performing the replacement. The record is not automatically unlocked, allowing for
fast multiple field replacements. The record is automatically unlocked when a Close,
Move, or Unlock command is issued on the work area.

PARAMETERS

The Replace function requires three parameters and has an optional fourth
parameter.

The first parameter is the work area handle of the file in which you want to perform
the replacement. The Open function provides this value when the data file is opened.

The second parameter is the name of the field to be replaced. See “Database
Structures” on page 383 for information on the name of fields in each GoldMine data
files. If you attempt to replace a field that does not exist in the file open in the
specified work area, the Replace function will fail.

The third parameter is the value to replace. This value must be enclosed in quotation
marks. The replace value must be a string value. If the replacement field is a date or
numeric field, GoldMine will convert the string data to the appropriate data type
prior to performing the replacement.

The fourth parameter will add data instead of replacing data. Using this parameter,
you can insert large amount of text into a notes field. To append instead of replace
incoming data from the third parameter, pass 1 as the fourth parameter. You can set
up a loop to feed notes in 256-byte segments to override the 256-byte limit for
inbound DDE requests.

RETURN VALUE

If the file was replaced, the Replace function returns 1. If the field could not be
replaced, 0 is returned. The failure can be caused under any of the following
conditions:

e Invalid parameter, such as an invalid work area handle.

e Invalid field name.

45



Integrating With GoldMine

e Record already locked by another user.

EXAMPLE
See “Adding an Empty Record” on page 33.

Performing a Sequential Search

Syntax [SEARCH(<work area>,<expression>,<index>)]

The Search function is used to perform a sequential search on a file. Unlike Move,
Search scans the table, one record at a time, looking for a record that satisfies the
search condition. The search condition can be any Xbase expression that GoldMine
understands, but is usually an expression that tests the value of one or more fields in
the file. When a match is found, the record pointer is located at the matching record.

Search starts with the record that immediately follows the current record (the next
logical record according to the selected index order) and continues until a match is
found or the end of file is encountered. Because of this, Search can be called
repeatedly to return a list of records that satisfy the search condition.

PARAMETERS
The Search function takes three parameters.

The first parameter is the work area handle of the file you want to search. The Open
function provides this value when the data file is opened.

The second parameter is the search expression, such as "ClI TY=' Los Angel es' "
The expression must be surrounded by quotation marks, and any string literal
characters with the expression must be surrounded by single quotes (* ).

The third parameter is the optional index order to use when searching the data file.
When this parameter is not specified, the data file is searched by record number
(physical) order. See “Database Structures” on page 383 for the appropriate values
and collating sequence for each data file’s indexes.

If an invalid index is selected for the data file, the Search function will not operate
properly.

RETURN VALUE
The Search function can return several values.

Search Return Values

Return Description

0 Error occurred or match could not be found

>1 Match found; return value indicated current physical record number (Xbase)
or record ID (SQL)

An error can be returned if an invalid work area handle is passed to the function, or
if an invalid search condition is passed.

46



Integrating With GoldMine

EXAMPLE

The following example will prompt the user for a city name, then display the contact
name for the first matching record.

Note that the example below is written in Visual Basic for Applications, and the
DDElnitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Mai n()
Di m | Channel As Long
Dim sWrkArea As String
Dim sRet As String
Di m sSeekVal As String
DimsQ As String
sQ = Chr (34)
| Channel = DDElnitiate("GoldM ne", "Data")
sWr kArea = DDERequest (I Channel, "[Open(Contactl)]")

"Search for a City
sSeekVal = UCase( |l nputBox("Enter a City to search for"))

sRet = DDERequest (I Channel, "[Mve(" + sWrkArea + ",Top)]")

sRet = DDERequest (| Channel, "[Search(" + sWrkArea + "," + sQ +
"Upper (CITY)="" + sSeekVal + "'" + sQ+ ")]")

If sRet = "" Then

MsgBox ("Search: No Match")

El se

MsgBox (" Search: Contact=" + DDERequest (| Channel, "[Read(" + sWrkArea +
", Contact)]"))

End If

ret = DDERequest (| Channel, "[C ose(" + sWorkArea + ")]")
DDETer mi nate (| Channel)
End Sub

Unlocking a Record

Syntax [UNLOCK(<work area>)]

The Unlock function unlocks a record previously locked by a call to either Append
or Replace. GoldMine does not specifically release a lock on a record until you call
Unlock, allowing you to perform multiple field replacements quickly. Before using
Unlock, you must open a data file using the Open function.

After calling Unlock, GoldMine will also update the remote synchronization data
structures to indicate the date and time that the record was modified.

47



Integrating With GoldMine

PARAMETERS

The Unlock function accepts one parameter — the work area handle of the file to
close. The work area handle is returned by the Open file when the file is opened.

RETURN VALUE
The Unlock function returns 1 if the record was unlocked, or 0 if an invalid work
area handle was passed to the function.

EXAMPLE
See “Adding an Empty Record” on page 33.

Accessing Contact Records

For specific applications that need access to the GoldMine contact database at the
logical level, the RecordObj function is the preferred access method. Unlike the
low-level DDE functions, the RecordObj function maintains all of the relationships
between the various GoldMine files. This access method is most often used for
document merging functions such as word processor mail merges or placing
information into a spreadsheet.

Linking GoldMine Fields with an External Application

Syntax [RECORDOBJ(<subfunction>,<scope>)]

The RecordObj function is a specialized function designed to link DDE fields in a
document application, such as a word processor or spreadsheet. Using RecordObj,
an application can access the contact record in a high-level fashion, rather than
opening the CONTACT1.DBF and CONTACT2.DBEF files using Open.

Calling RecordObj within a DDE program is equivalent to viewing and
manipulating the contact record within GoldMine. The calling program can control
the record pointer in the contact record much the same way a GoldMine user can
move the record pointer. In fact, RecordObj can be called in such a way as to create a
minimized contact record in the GoldMine work area display.

The primary differences between using Open, Move, and Read to access contact
information and using RecordObj are described in the following table.

Differences in Accessing Contact Information

Using Open, Move, Read Using RecordObj

Any filter or group that is active on a contact RecordObj can work in conjunction with a filter or

record in GoldMine is ignored when files are group. Any records that do not match the filter

accessed using Open and Move expression, or are not members of the group, are
skipped

The only way to maintain the relationship Automatically maintains the relationship between

between the CONTACT1 and CONTACT2 CONTACT1 and CONTACTZ2, and other contact

files, is to manually reposition CONTACT2 information such as history.

whenever the record pointer is moved in

CONTACT1.DBF.

48



Integrating With GoldMine

Using Open, Move, Read

Using RecordObj

RecordObj does not contain a method to read
specific fields from the database. It is expected that
the application will use DDE link fields or the Expr

function to query information from the database,
and use RecordObj function calls only to position
the record pointer.

When RecordObj is used to move the record
pointer, the contact record screen in GoldMine is
updated, and a DDE Warm Link Advise message
is sent to all DDE link fields, automatically updating
these fields with the new contact information.

PARAMETERS

The RecordObj function requires either one or two parameters.

The first parameter is the name of the RecordObj subfunction that you want to

perform.

Depending on the subfunction, a second parameter can be required. The following
table lists the RecordObj subfunctions and the requirements of the second parameter.

Valid RecordObj Functions

Subfunction Description 2nd Parameter
SETOBJECT Create or select contact record Optional object pointer
TOP Move to first logical record Not required
BOTTOM Move to last logical record Not required
SKIP Skip records Optional, recs to skip
SEEK Seek a specific record by key Search key value
SETORDER Select an index Index tag number
GETORDER Return the currently active index Not required

name
SETTITLE Set the contact record title Text of title
CLOSEWINDOW Close the contact record None
SETRECORD Change the behavior of SKIP, TOP, | Name of data structure to be queried

and bottom
REFRESH Repaint the contact record Not required
GETRP Return the point to the current Not required

contact record (Xbase) or the record

ID (SQL)
GETFILTEREXPR Get the activated filter's expression | Not required
GETGROUPNO Get the GroupNo of the activated Not required

group

49




Integrating With GoldMine

Setobject

Top

Bottom

Skip

Goto

Seek

Setorder

The SetObject call must be called prior to calling any other RecordObj subfunction
to specify the contact record that subsequent RecordObj calls will manipulate.

If SetObject is called without a second parameter, subsequent calls to RecordObj
will manipulate the currently active contact record. The user can change the active
contact record in GoldMine while the DDE conversation is active, but this will not
affect the contact record that is linked to the RecordObj function.

If SetObject is called with a second parameter of 0, GoldMine will create a
minimized contact record in the work area display, and subsequent calls to
RecordObj will manipulate that contact record. If SetObject is called with a second
parameter of 1, GoldMine will create a minimized contact record in the work area
display and copy any filter or group active on the last used contact record into the
newly minimized contact record.

If RecordObj is called with a specific pointer number, GoldMine will attempt to
establish a link with that contact record. A client application can obtain this pointer
only when using the GoldMine document merging feature, when GoldMine, acting
as a DDE client, passes this long pointer as the seventh parameter.

Positions the record pointer at the first logical record according to the current index
order. For example, if the contact record index order is set to Company, a call to
Top will result in the record pointer being positioned at a record with a company
name such as “AAA Cleaners.” GoldMine will also update the contact record to
display the new record.

Positions the record pointer at the last logical record according to the current index
order. For example, if the contact record index order is set to Company, a call to
Bottom will result in the record pointer being positioned at a record with a
company hame such as “Z-best Bakery.” GoldMine will also display the new
record.

The Skip subfunction moves the record pointer on a record-by-record basis.

If Skip is called without the second parameter, it will move the record pointer to the
next logical record according to the current index order.

If Skip is called with a string numeric as the second parameter, the record pointer
will be moved forward by the indicated number of records if the value is positive,
or backwards if the value is negative. Negative numbers must be passed in
guotation marks, for example “-1.” GoldMine will also update the display to show
the new record.

The Skip subfunction is sensitive to any filter or group that can be active on the
contact record in GoldMine. For example, if the user applies a filter to the contact
record in GoldMine, the Skip subfunction will skip over any records that do not
match the filter expression.

The Goto subfunction positions the record pointer at the record number specified
by a string numeric passed as the second parameter.

Attempts to locate a record in the data file with an index key that matches the
string passed as the second parameter. Partial key searches are allowed, and
GoldMine will position the record pointer at the record with the key that most
closely matches the passed value. GoldMine will update the display to show the
new record.

Selects an active index for ordering and SEEKing the contact database. Only the
twelve CONTACT1 indexes can be used for this subfunction. See “Database
Structures” on page 383 for the appropriate values and collating sequence for
each data file’s indexes.

50



Integrating With GoldMine

Getorder Returns the active index being used to sort the contact records. See “Database
Structures” on page 383 for the appropriate values and collating sequence for
each data file’s indexes.

Settitle Changes both the text in the title bar of the contact record’s window and the text
displayed below a minimized contact record. For example, a DDE application that
merges contact records within a document can modify the contact record title to
indicate the number of records that have been merged. Any text that is passed as
the second parameter must be enclosed in quotation marks, and will be used as
the new title’s text.

Closewindow Closes the contact record when processing is complete. Issuing this call is
equivalent to selecting Close from the contact record’s system menu.

Setrecord Changes the behavior of the Skip, Top, and Bottom subfunctions to allow ancillary
contact information (such as additional contacts) to be queried using the
RecordObj function. Normally, GoldMine assumes the CONTACT1 data file to be
the parent data file, and when the Skip, Top, or Bottom subfunction is called, the
record pointer is repositioned in this data file. When accessing information in
GoldMine tabs, however, the Skip, Top, and Bottom subfunctions must be able to
reposition the record pointer in the data file that stores these items (CONTSUPP).
The SetRecord subfunction accepts the name of the data structure being queried
as the second parameter. Valid data structure names are listed in the following
table.

Setrecord Valid Structure Names

Data Structure Name Description
CONTACTS Additional contacts
PROFILE Profile records
REFERRALS Referral records
LINKS Linked documents
PRIMARY Primary contacts

Using SetRecord changes the behavior of the Skip, Top, and Bottom subfunctions.

The first parameter is the name of the RecordObj subfunction that you want to
perform. When Top is called, GoldMine will position the record pointer in the
supplementary data file so that the first record containing the selected information is
the current record. For example, if SetRecord is used to select CONTACTS, Top will
position the record pointer on the first additional contact record for the current
contact. The record pointer in the primary information data file (CONTACT1) will
not be moved, so the name of the current company will remain the same. Bottom
behaves in a similar manner.

Skip will position the record pointer in the supplementary file on the next record of the
selected type. For example, if SetRecord is used to select CONTACTS, Skip will
position the record pointer in the supplementary file on the next additional contact
record for the current contact. The record pointer in the primary information data file
(CONTACT1) will not be moved, unless the record pointer in the supplementary file
was already positioned at the last record of the selected type; then GoldMine will

51



Integrating With GoldMine

reposition the record pointer in the primary information data file (CONTACT1) to the
next contact record and reset the record pointer in the supplementary file to the first
supplemental record of the selected type. DDE macros are also sensitive to the setting
of the SetRecord subfunction —see “DDE Macros” on page 80.

Refresh Repaints the contact record

GetRP Obtains a pointer of the currently selected contact record
GetGroupNo Returns the group number (if a group is activated)
GetFilterExpr Returns the filter expression (if a filter is activated)

RETURN VALUE
All RecordObj subfunctions return 1 if the function was completed successfully or 0
if an internal error occurred.

EXAMPLE
The following example will count the number of additional contacts for the current
contact.

Note that the example below is written in Visual Basic for Applications, and the
DDElInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Main()
Di m | Channel As Long
Di m sAccount No As String
DimsRet As String
Di m sANRT As String
Di m i AddCount As I nteger

| Channel = DDElnitiate("GoldM ne", "Data")

sAccount No = DDERequest (I Channel, "Contact 1- >Account No")

sRet = DDERequest (| Channel, "[RecordObj (Sethject, 1)]")

sRet = DDERequest (| Channel, "[Recordbj (SetRRecord, Contacts)]")
sRet DDERequest (I Channel, "[RecordOj (Top)]")

SANRT = DDERequest (| Channel , "Tri m( Cont Supp- >Account No) +Tr i n{ Cont Supp-
>RecType) ")

i AddCount = 0

Whil e SANRT = sAccountNo + "C'

i AddCount = i AddCount + 1

sRet = DDERequest (| Channel, "[RecordQbj (Skip)]")

sANRT = DDERequest (| Channel, "Tri n{ Cont Supp->Account No) +Tri n{ Cont Supp-
>RecType)")

wend
sRet = DDERequest (I Channel, "[Recordhj (C oseW ndow)]")
MsgBox (Str (i AddCount) + " Additional Contacts")

52



Integrating With GoldMine

DDETer m nate (| Channel)
End Sub

Accessing Specialized DDE Functions

GoldMine provides a set of specialized functions for performing specific tasks, such
as adding document links to the contact database or sending GoldMine a CallerID
message.

Retrieving Login Credentials for Use with the GMXS32.DLL

Syntax [GetLoginCredentials]

GOLDMINE VERSION 5.70.20222

The GetLoginCredentials function is used to retrieve a string containing login
credentials to be used for logging into the GMXS32.DLL through the
GMW_LoadAPI, GMW_LoadBDE or GMW_Login functions. Using this option, it is
not necessary to prompt the integration user for login information if GoldMine is
running. The login credentials received are only valid for 30 seconds, so do not store
them and attempt to use them at a later time. The string returned by this command
should be used as the password to the appropriate login function, where the
username is “*DDE_LOGIN_CREDENTIALS*”.

EXAMPLE

This example retrieves various parameters from GoldMine and passes them to the
GMW_LoadAPI or GMW_LoadBDE function in the GMXS32.DLL.

The following example is written in Visual Basic 6.0 using the DDEInitiate and
DDERequest functions defined in Establishing a DDE Conversation on page 31.

Wth frnDDE
iResult = .DDElnitiate
If i Result Then
frnPat hs. t xt SysFol der = . DDERequest (" &SysDir")
frmPat hs. t xt Gol dDir = . DDERequest (" &Gol dDi r")
frnPat hs. t xt CormonDi r = . DDERequest (" &ConmonDir ")
sLogi nCredential s = . DDERequest ("[ Get Logi nCredenti al s]")

| Result = GWV LoadBDE(frnPat hs. t xt SysFol der, frnmPaths.txtGoldDir, _
frnPat hs. t xt CoormonDi r, “*DDE_LOG N_CREDENTI ALS*", _
sLogi nCredenti al s)

End Wth

Retrieving the ReclD of the Current Opportunity

Syntax [GetActiveOppty]

GOLDMINE VERSION 5.70.20222
The GetActiveOppty function is used to retrieve the RecID of the currently selected
Opportunity in the Opportunity Manager.

53



Integrating With GoldMine

RETURN VALUE

The GetActiveOppty function returns the record ID of the currently selected
opportunity. If no opportunity is available, an empty string is returned.

EXAMPLE

The following example reads the currently selected Opportunity’s record ID and
displays the value in a message box.

The following example is written in Visual Basic 6.0 using the DDElInitiate and
DDERequest functions defined in Establishing a DDE Conversation on page 31.

Wth frnrDDE
iResult = .DDElnitiate
If iResult Then
sResult = . DDERequest ("[ Get ActiveOppty]")
MsgBox sResult
End |f
End Wth

Completing a Calendar Activity

[CalComplete(<RecNo>,<ActvCode>,<ResultCode>,

i <User><Ref>,<Notes>,<RetainDate>)]

The CalComplete function is used to complete an activity from the Calendar.

PARAMETERS

The CalComplete function takes up to seven parameters. All parameters must be
passed in quotation marks.

The first parameter is the record number of the calendar activity to be completed.
The second parameter is the Activity Code. This parameter is optional.
The third parameter is the Result Code. This parameter is optional.

The fourth parameter is the User. If this parameter is not specified, the User field
defaults to the currently logged user.

The fifth parameter is the history Reference. This parameter is optional.
The sixth parameter is the Notes for the history record. This parameter is optional.
The seventh parameter indicates whether the function should retain its original date,

or use the current date/time. To retain the original date, set this value to 1.

RETURN VALUE

The CalComplete function returns the record number (Xbase) or record ID (SQL) of
the new history record created.

EXAMPLE

This example will open the CAL file, read the current RecNo (Xbase), or RecID
(SQL), and complete the record to History.

54



Integrating With GoldMine

Note that the example below is written in Visual Basic for Applications, and the
DDElnitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Main()

Di m | Channel As Long
DimsRet As String

Dim sRecNo As String
Dim sHRecNo As String
Dim sWrkArea As String
DimsQ As String

sQ = Chr (34)
| Channel = DDElnitiate("GoldM ne", "Data")

sWor kArea = DDERequest (| Channel, "[OQpen(CAL)]")

sRecNo = DDERequest (I Channel, "[RecNo(" + sQ + sWirkArea + sQ + ")]")
sHRecNo = DDERequest (| Channel, "[Cal Conplete(" + sQ + sRecNo + sQ + ")]")
MsgBox (" New Hi story Record Number: " + sHRecNo)

DDETer m nate (| Channel)

End Sub

Displaying the Contact Record of an Incoming Caller

Syntax [CALLERID(<telephone>,<message>,<display dialog>)]

[CallerIDAIll(<phone>, <message>, <displayDlg>, <bUPhone>)]

The CallerID and CallerIDAII functions are used to inform the GoldMine user that
an incoming call has been identified by Automatic Number Identification (ANI)
equipment attached to the telephone system. By using the caller ID functions,
GoldMine can perform a lookup on the contact database, and attempt to locate a
contact record with a telephone number that matches the telephone number
extracted by the ANI device.

With the caller ID functions, GoldMine can automatically display the contact record
of the caller. A dialog box is displayed, allowing the user to select an action. A CallerID
function parameter is used to specify the message in the dialog box.

The two functions perform the same functionality with the difference of the
CallerIDAIl command will search all phone numbers for the contact record (except
FAX), instead of just the Phonel field.

PARAMETERS

The caller ID functions accept three parameters. The CallerIDAIl function accepts a
fourth parameter that the CallerID function does not:

55



Integrating With GoldMine

The first parameter is the telephone number of the caller as captured by the ANI
device. The calling application is responsible for formatting the telephone number
that appears in the Phonel field in GoldMine. Enclose this parameter in quotation
marks ().

The second parameter is the optional message to be displayed in the dialog box in
GoldMine. Enclose this parameter in quotation marks (“).

56



Integrating With GoldMine

The third parameter specifies whether the dialog box is displayed. This parameter is
the sum of the required options. For example, to display the caller’s contact record in
the current window if the record is found, or to display the contact listing if the
caller’s phone number is not found, specify 6 (2+4) as the <display dialog>
parameter. The following table lists valid parameter values.

CallerID Parameters

Value Description

0 Dialog box is displayed (default when third parameter is not passed)

1 Dialog box is not displayed, and contact record is displayed in a new contact record

2 Dialog box is not displayed, and contact record is displayed in the current contact record
4 Contact Listing is displayed when GoldMine cannot find the contact’s telephone number.

To activate this option, add this value to the third parameter value.

8 Restores input focus to the window that had input focus just before CALLERID is
called—used by applications that control the entire interface.

The fourth parameter that is only accepted by the CallerIDAII function is whether or
not to search the UPhone fields stored in Contact2. Set to 1 to search the UPhone
fields, or 0 to omit the UPhone fields.

RETURN VALUES

CallerID Return Values

Return Description

0 Error occurred

1 Contact record found

2 Contact record not found
EXAMPLE

The following example demonstrates the CallerID function.

Note that the example below is written in Visual Basic for Applications, and the
DDElnitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Main()

Di m | Channel As Long

Dim sRet As String

Di m sPhone As String

DimsQ As String

sQ = Chr(34)

| Channel = DDElnitiate("GoldM ne", "Data")

sPhone = I nput Box("Enter Phone to Look Up. Format: (###) ###- #H#H#")
sRet = DDERequest (I Channel, "[CallerID(" + sQ + sPhone + sQ+ ")]")
End Sub

57



Integrating With GoldMine

Running a Counter

Syntax [COUNTER(<string>,<inc>,<start>,<action>)]

The Counter function returns a sequence of consecutive numbers each time the
expression is evaluated.

PARAMETERS

The counter name must be unique, and can be a maximum of 10 characters. Each
evaluation of the Counter function increments the counter by the <inc> value.

The <start> and <action> parameters are optional. When <action> is 1, the start
value resets the counter. When <action> is 2, the counter is deleted. Counter stores
the count value between GoldMine sessions, and it is shared by all GoldMine users.

GoldMine can track an unlimited number of uniquely named counters. The counter
values are stored in the LOOKUP table.

RETURN VALUE
The Counter function returns a number incremented by <inc>.

EXAMPLE
[ Count er (“I nvoi ceNo”, 1, 1000) ]

Returning GoldMine Record Data

Syntax [DATASTREAM(<subcommand>,<parameter>)]

DataStream returns the data of ordered records from any GoldMine table using the
most efficient method possible. The caller can specify the fields and expressions to
return, as well as the range of records to return. A filter can optionally be applied to
the data set.

The DataStream method allows for many useful applications. One example would be
to publish the contents of GoldMine data on the Internet by merging HTML
templates with the data returned by DataStream. Web pages can be created to display
GoldMine data requested by a visitor. Based on the visitor’s selections, a company
could dynamically present a variety of HTML pages, such as:

e Addresses of product dealers in a particular city
¢ Financial numbers stored in Contact2
e Seating availability of upcoming conferences

With a fast Internet connection and a strong SQL server, the GoldMine client could
simultaneously respond to dozens of requests.

58



Integrating With GoldMine

RECORD SELECTION

The DataStream command consists of four subcommands. Each subcommand takes
different parameters. The subcommands are shown below, in the order in which
they must be called:

[DataStream("range", sTable, sTag, sTopLimit, sBotLimit, sFields, sFilter, sFDIm,
sRDIm)]

[DataStream("query", sSQL, sFilter, sFDIm, sRDIm)]

[DataStream("fetch", nRecords, iHandle)]

[DataStream("close", iHandle)]

The “range” or “query” subcommands must be called first to request the data. The
“range” and “query” subcommands return an integer handle, iHandle, which must
be passed to the “fetch” and “close” subcommands. You must use either “range” or
“query” —not both.

[DataStream("range", sTable, sTag, sTopLimit, sBotLimit, sFields, sFilter, sFDIm,
sRDIm)]

PARAMETERS

The sTable, sTag, sTopLimit, and sBotLimit parameters determine the range of
records to scan, similar to the DDE SETRANGE command. The sFields parameter
specifies the requested fields and expression to return.

The sField parameter passed to the “range” subcommand should consist of the field
names and Xbase expressions to evaluate against each record in the data set. Each
field must be terminated with the semicolon (;) character. Xbase expressions must be
prefixed with the ampersand (&) character and terminated with a semicolon.

The other “range” parameters are optional.

RETURN VALUE
The “range” subcommand returns a range of records based on an index.
[ Dat aStrean("query", sSQ., sFilter, sFDm sRD nj]
The “query” subcommand sends the sSQL query for evaluation on the server.

PARAMETERS

The SQL query can join multiple tables and return any number of fields. The
optional sFilter parameter can specify a Boolean Xbase filter expression to apply to
the data set (even on SQL tables), similar to the DDE SETFILTER command. The
optional sFDIm and sRDIm parameters can override the return packet’s default field
and record delimiters of CR and LF.

[ DataStrean("fetch", nRecords, iHandle)]

59



Integrating With GoldMine

The “fetch” subcommand returns a single packet string that contains the requested
data from all records processed by the current “fetch” command, as specified by the
second nRecords parameter. iHandle must be the value returned from “range” or
“query.” The “fetch” command can be issued multiple times, with positive and
negative values, to scroll down or up the cursor. See “Return Packet” below.

[ Dat aStrean("cl ose", iHandle)]

The “close” subcommand must be called when the operation is complete. Unclosed
data streams will leak memory and leave the database connections needlessly open.
Passing an iHandle of 0 closes all open DataStream objects (of all DDE
conversations).

EXAMPLE 1

The following commands request the first 100 cities from the Lookup file, including
the city name and record number (RecID under SQL):
[ Dat aStrean("range", "lookup", "lookup", "CITY", "CITYZ", "Entry;
&RecNo() ; ") ]

[ DataStrean("fetch", 100, iHandle)]
[ Dat aStrean("cl ose", iHandle)]

EXAMPLE 2

The following commands request the first 10 profiles of the current contact record,
followed by a request for the next 50:
[ Dat aStrean("range", "cont supp", "cont spfd", sAccNo+"P", sAccNo+"P",
" Cont act ; Cont SupRef;")]
[ DataStreanm("fetch", 10, iHandle)]

[ Dat aStrean("fetch", 50, iHandle)]
[ Dat aStrean("cl ose", iHandle)]

RETURN PACKET

The “fetch” command returns a single packet string containing the data from all
requested records. The packet includes a header record, followed by one record for
each record evaluated by “fetch.” Within each record in the packet, the fields are
separated by a Field Delimiter, the carriage return character by default (13 or 0x0D).
The records in the packet are separated by the Record Delimiter, the line feed
character by default (10 or 0x0A). These delimiters are convenient when the
requested data does not contain notes from blob fields. Otherwise, you must
override the default delimiters by passing other delimiter values to the “range” and
“query” commands. The characters 1 and 2 would probably make good delimiters
for packets with notes.

The City Lookup example from above might return a packet of data similar to:

3000- 0004
Bost on| 23
London| 393
Los Angel es| 633
New Yor k| 29

60



Integrating With GoldMine

The packet header record consists of two sections. The first byte can be 0, 3

or 4. Zero indicates that more records are available, which could be fetched with
another “fetch” command. A value of 3 indicates the end-of-file (EOF), and 4
indicates the beginning-of-file (BOF). The number following the dash indicates the
total number of data records contained in the packet.

Packets should be designed to be 8K to 32K. DataStream takes about as much time to
read three records as it does to read 30. For best performance, adjust the number to
records requested by the “fetch” command to return packets of 8K to 32K.

PERFORMANCE

DataStream is the fastest way to read data from GoldMine tables. Used correctly, the
GoldMine DataStream will return the data faster than most development
environments would directly. DataStream offers the following advantages:

1. DataStream issues a single, efficient SQL query or Xbase seek to retrieve the
records from the back-end database to the local client. On SQL databases,
requests of a few hundred records could be sent from the server to the client
with a single network transaction, thereby minimizing network traffic.

2. Allfields and expressions are parsed initially by the “range” and “query”
commands, then quickly evaluated against each record in the “fetch”
command. Other DDE methods (and development environments) require
that each field be parsed and evaluated each time the field’s data is read. This
can save a significant amount of time when reading hundreds or thousands
of records.

3. Only three DDE calls are required to read all the data. Using traditional
record-by-record querying would require one DDE call for each field of each
record (reading 10 fields from 50 records would require 500 DDE calls).

4. All the work to gather and format the data is done in fast and efficient C. The
caller needs only to parse the resulting packet string.

The “range” and “query” commands execute equally fast on SQL databases. The
“range” command executes much faster on Xbase tables than the “query” command.

EXAMPLE 3

The following DataStream command returns all e-mail addresses in the current
contact file.
[ Dat aStrean{ "range", "contsupp","contspfd","PI NTERNET A", " Pl NTERNET
B", " Cont SupRef ;") ]
[ DataStrean("fetch", 999, 1)]
[ Dat aStrean("cl ose", 1)]
To return only the e-mail addresses of people at FrontRange Solutions, add a filter to
the “range” command:
[ Dat aStrean("range", "contsupp","contspfd","PI NTERNET A", "PI NTERNET AZ",

" Cont SupRef; Account No; &Recno();", "' @ol dm ne.com $
| ower ( Cont SupRef)")]

61



Integrating With GoldMine

Q

EXAMPLE 4
The following DataStream returns all entries from all F2 lookups. The fields are
delimited with a comma, and the records with the default LF.

[ Dat aStrean("range", "lookup", "lookup", "A",
HZH' " Fi el d'\hrr.e; Entl’y; II, n ll’ ll’ ll)]
[ Dat aStrean("fetch", 2000, 1)]
[ Dat aStrean("cl ose", 1)]

EXAMPLE 5
The following DataStream returns the exact packet as the one above, but using an
SQL query:

[ Dat aStrean( " query", "select fieldnane, entry froml ookup where fiel dnane
>'A order by fieldname, entry", "",",")]

Processing a Web Import Instruction File

Syntax [Execlnilmp(<filename>)]

GoldMine can send a DDE command to process a Web import instruction file. Using
a DDE command allows other applications to create contact records in GoldMine. To
start processing an instruction file via DDE, send the Execlnilmp(<filename>)
command; for example, [ExecInilmp(“c:\ goldmine\imp.ini”)].

For details about setting up and working with the GoldMine Web Import Gateway, see
“Capturing Web Data” in Maintaining GoldMine.

Reading an Xbase Expression Without Opening a File

Syntax [EXPR(<expression>)]

The Expr function is similar to the Read function in that it attempts to evaluate an
Xbase expression and return the result as a string. The Expr function, however, does
not require you to open a specific data file using the Open function. The expression
passed to the Expr function is evaluated against the current operating state of
GoldMine (usually, the currently displayed record), rather than the state of a specific
work area. For this reason, you should be aware that differences between the return
values could exist for the same expression passed to Read and Expr.

PARAMETERS

The Expr function takes one parameter — the Xbase expression to be evaluated.
GoldMine supports a subset of the Xbase dialect, so there is substantial flexibility in
the application of this function. Enclose this parameter in quotation marks ().

When referencing field names within an expression, you should always use an alias;
otherwise, GoldMine assumes CONTACT1 to be the default alias.

RETURN VALUE

The Expr function returns a character string containing the value of the specified
expression. If an error occurs, or the expression could not be evaluated, the Expr
function will return a null string.

62



Integrating With GoldMine

EXAMPLE
The following expression will return the number of characters in notes file of the
current contact.

Note that the example below is written in Visual Basic for Applications, and the
DDElnitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Mai n()

Di m | Channel As Long
Di m sExpr As String
Dim sRet As String

DimsQ As String

sQ = Chr (34)
| Channel = DDElnitiate("GoldM ne", "Data")
sExpr = "Lengt h(Cont act 1- >Not es) "

sRet = DDERequest (| Channel, "[EXPR(" + sQ + sExpr + sQ + ")]")
MsgBox ("Notes Length = " + sRet + " characters")
End Sub

Adding Merge Fields to a Form

Syntax [FORMADDFIELDS(<FormNo>,<Fields>)]

The FormAddFields function adds merge fields to a form profile.

PARAMETERS
The FormAddFields function takes two parameters. Enclose each parameter in
quotation marks ().

The first parameter is the number of the form.

The second parameter is a string that lists fields, macros, and expressions; each item
in the string is separated by a semicolon (;). GoldMine parses the string, checks for
duplication, assigns names to the fields, and then stores the items.

EXAMPLE

The following example shows how to export a data file with GoldMine. It uses all of
the Formxxxx functions, such as FORMADDFIELDS, FORMNEWFORM,
FORMQUERYCREATE, FORMCLEARFIELDS, FORMCLOSEFORM, and
FORMGETFIELDNAME.

Note that the example below is written in Visual Basic for Applications, and the
DDElnitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

63



Integrating With GoldMine

Sub Mai n()

i m | Channel As Long
m sRet As String
m sFi el dList As String
m sFormNo As String
msFile As String
m sNunRecs As String
m sMergeCode As String
msQ As String

sMergeCode = ""
sQ = Chr(34)
"Popul ate the field Ilist
sFi el dLi st = "&Contact ; Phonel ; Contactl->State ;
SUBSTR( Conpany, 1, 5) "
| Channel = DDElnitiate("GoldM ne", "Data")
'Get a new Form Nunber
sFormNo = DDERequest (| Channel , "[ For mNewFormo()]")
'"Register the fields
sRet = DDERequest (I Channel, "[FornmAddFields(" + sQ + sFormNo + sQ +
+ sQ + sFieldList + sQ+ ")]")
‘"Display the field names as assigned by CGol dM ne

0000000

MsgBox ("&Contact=" + Fi el dNane(| Channel, sFormNo, "&Contact"))
MsgBox (" Phone=" + Fi el dName(l Channel, sFornmNo, "Phonel"))
MsgBox (" Contactl1l->State=" + Fi el dNane(| Channel, sFormNo, "Contact1-
>State"))
MsgBox (" SUBSTR=" + Fi el dNanme(| Channel, sFor nmNo,
" SUBSTR( Conpany, 1,5)"))

"Gve the output file a nanme

sFile = "C \ GVDATA. DBF"

"Create the file

sNunmRecs = DDERequest (| Channel, "[FornCreateFile(" + sQ + sFornNo +
sQ+ "," +sQ+ sFile +sQ+ "," +sQ+ "21" +sQ+ ", " + sQ+
sMergeCode + sQ + ")]")

Wi | e DDERequest (| Channel, "[FormueryCreate(0)]") <> "-1"

"wait until DBF is created

Wend

‘Clear the fields since we will not use them again

sRet = DDERequest (I Channel, "FornCl earFields(" + sQ + sFormNo + sQ +
"))

'Close the file when done

sRet = DDERequest (| Channel, "FornC oseForn()")

MsgBox (“Records finished exporting to " + sFile)

End Sub

Function Fi el dName(| Channel As Long, sFormNo As String, sField As String)
As String
DimsQ As String

sQ = Chr (34)
Fi el dNane = DDERequest (I Channel, "[FornCet Fi el dName(" + sQ + sFornNo +
sQ+ "," +sQ+ sField +sQ+ ")]")

End Function

Deleting Fields from a Form

Syntax [FORMCLEARFIELDS(<FormNo>)]

The FormClearFields function opens an existing form profile and deletes all
associated fields.

64



Integrating With GoldMine

PARAMETERS

The FormClearFields function takes one parameter —the number of the form.
Enclose this parameter in quotation marks (").

RETURN VALUE
The FormClearFields function returns 1 if the profile is open, or 0 if an error occurs.

EXAMPLE
See “Adding Merge Fields to a Form” on page 109.

Closing a Form Profile

Syntax [FORMCLOSEFORM(<FormNo>)]

The FormCloseForm function closes an open form profile.

PARAMETERS

The FormCloseForm function takes one parameter, which is the number of the form.
Enclose this parameter in quotation marks (").

EXAMPLE
See “Adding Merge Fields to a Form” on page 109.

Creating an Xbase File with Registered Fields

Syntax [FORMCREATEFILE(<FormNo>,<FileName>,<WhichRec>,<MergeCode>)]

The FormCreateFile function creates an Xbase (DBF) file with all registered fields.
Any active filter or group that applies to the contact record is taken into account.
FormCreateFile can be used to export data via DDE.

PARAMETERS

The FormCreateFile function takes four parameters. Enclose all parameters in
quotation marks (").

The first parameter is the number of the form.
The second parameter is the name of the .DBF file to be created.

The third parameter indicates which records are to be exported. The WhichRec value
is the sum of values for each available listed below.

WhichRec Values

Value Description

1 Primary

2 Secondary

4 All records

8 Forward to last

16 Return control to the calling program immediately after export has started

65



Integrating With GoldMine

EXAMPLES OF WHICHREC PARAMETER

Current contact 1
All primary contacts 5 (1+4)
Forward to last of primary and additional contacts 11 (1+2+8)

The fourth parameter is the merge code. If any merge code value(s) are included in
the function, only records with the matching merge code(s) will be included. To
include multiple merge codes, place a space between each individual merge code. If
the fourth parameter is empty, all records are included.

RETURN VALUE

The FORMCREATEFILE function returns the total number of records in the output
.DBF file.

EXAMPLE
See “Adding Merge Fields to a Form” on page 63.

Returning a Field Name for an Expression

Syntax [FORMGETFIELDNAME(<FormNo>,<Field>)]

The FormGetFieldName function returns the field name for an expression, a macro,
or a field.

PARAMETERS

The FormGetFieldName function takes two parameters. Enclose both parameters in
quotation marks (").

The first parameter is the number of the form. The second parameter is the name of

the field, macro, or expression to be associated with the file name.

EXAMPLE
See “Adding Merge Fields to a Form” on page 109.

Returning a Value for Unattached Fields

Syntax [FORMNEWFORMNO()]

RETURN VALUE

The FormNewFormNo function returns a new, unique FormNo value that can be
used to register fields not attached to a GoldMine form. Enclose this parameter in
quotation marks (").

EXAMPLE
See “Adding Merge Fields to a Form” on page 109.

66



Integrating With GoldMine

Counting the Number of Exported Records

Syntax [FORMQUERYCREATE(<FLAGS>)]

The FormQueryCreate function provides status information during an export by
returning the number of records exported during the export process.

PARAMETERS

The FormQueryCreate function takes one optional parameter. Enclose this
parameter in quotation marks (").

The following table lists values of FormQueryCreate parameters.

FormQueryCreate Parameters

Value Description

0 Export in progress (default)
1 Start process

2 Abort process

RETURN VALUE

The FormQueryCreate function returns the number of records created while an
export is in progress, or -1 when the record export process is completed.

EXAMPLE
See “Adding Merge Fields to a Form” on page 109.

Creating a History Record

Syntax [INSHISTORY (<accno>,<rectype>,<ref><notes>,<actv><rslt> <user>)]

The InsHistory function is used to create a history record in GoldMine. The
InsHistory function provides a higher level interface for creating these records than
using Open, Append, and Replace.

PARAMETERS

The InsHistory function takes up to seven parameters. All parameters must be
passed in quotation marks (").

The first parameter is the account number of the contact record to which the new
history record will be linked.

The second parameter is the record type to create. The following values are available:

InsHistory Valid Values (2nd parameter)

Value Record Type Value Record Type

A Appointment U Unknown

C Phone call CcC Call back

D To-do Cl Incoming call

E Event CM Returned message

67



Integrating With GoldMine

Value Record Type Value Record Type
L Form CoO Outgoing call

M Sent message MG E-mail message
@) Other Mmi Received e-mail
S Sale MO Sent e-mail

T Next action

The third parameter is the history Reference.

The fourth parameter (optional) is the Notes for the history record.
The fifth parameter (optional) is the Activity Code.

The sixth parameter (optional) is the Result Code.

The seventh parameter is the User. If this parameter is not specified, the User field
defaults to the currently logged user.

RETURN VALUE

The InsHistory function returns the record number (Xbase) or record ID (SQL) of the
new history record if the function was completed successfully. The function returns
0 if a new record could not be appended to the data file.

EXAMPLE
The following example shows how to create a history (incoming call) record for the
current contact.

Note that the example below is written in Visual Basic for Applications, and the
DDElnitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see “Establishing a DDE Conversation” on page 31.

Sub Main()

Di m | Channel As Long

Di m sAccount No As String
Di m sRecType As String
Dim sRef As String
DimsRet As String
DimsQ As String

sQ = Chr(34)

| Channel = DDElnitiate("GoldM ne", "Data")

sAccount No = DDERequest (| Channel, "Contact 1->Account No")
sRecType = "CI" "Incom ng Call

sRef = "New History"

68



Integrating With GoldMine

V

sRet = DDERequest (| Channel, "[lInsHi story(" + sQ + sAccountNo + Chr$(34) +
"," + Chr$(34) + sRecType + Chr$(34) + "," + Chr$(34) + sRef + sQ +
31"

If sRet = "0" Then

StatusBar = "History not Created"
End | f

DDETer mi nate (| Channel)
EndSub

Creating or Updating a Document Link

Syntax [LinkDoc(<recno>,<filepath>,<title>,<owner><notes>,<nSync>)]

The LinkDoc function is used to create or update a document link in GoldMine.
Document links allow you to launch directly into an application and load the
application with a document by clicking on the desired document listed in the
contact’s Links tab. GoldMine maintains these links as records in the supplementary
data file. The LinkDoc function provides a higher level interface to these records
than can be obtained by using Open, Append, and Replace.

PARAMETERS
The LinkDoc function takes up to six parameters.

The first parameter is the record number of the link record to be updated. If a new
link record is to be created, pass 0 as the first parameter.

When GoldMine calls the mail merge macro, the record number of the linked document
record is passed as the sixth parameter.

The second parameter is the fully qualified path and filename of the file to link. Keep
in mind that a valid association must exist for the file’s extension if GoldMine is to
automatically launch the file’s application. See “Installing the GoldMine DDE Link”
for information on creating a file association using Windows Explorer. Enclose this
parameter in quotation marks (“).

The third parameter is the document title. Enclose this parameter in quotation

"

marks (“).

The fourth parameter is the optional document owner. If this field is not passed, the
document owner defaults to the name of the currently logged GoldMine user.

The fifth parameter is optional notes for the linked document record in the Links tab.

The sixth parameter defines the remote synchronization status for the linked
document from the values shown in the following table.

69



Integrating With GoldMine

NSync Valid Values

Value Action

-1 Uses the GoldMine default as defined by Allow new documents to sync by default in
the Sync tab of the Preferences window.

0 Does not synchronize the newly linked document.

Allows the newly linked document to synchronize.

RETURN VALUE

The LinkDoc function returns the new record number (Xbase) or record ID (SQL) if
the function was completed successfully. The function returns any empty string if a
new record could not be appended to the data file, or an existing record could not be
locked for update.

EXAMPLE

The following example prompts the user for a file name and description, then creates
a document link to the current contact.

Note that the example below is written in Visual Basic for Applications, and the
DDElnitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see “Establishing a DDE Conversation” on page 31.

Sub Main()

Di m | Channel As Long
Di m sDocPath As String
DmsTitle As String
DimsRet As String
DimsQ As String

sQ = Chr$(34)

| Channel = DDElnitiate("GoldM ne", "Data")

sDocPat h = | nput Box("Enter Full Path of Docunent to Link")
sTitle = InputBox("Enter Title of Link")

sRet = DDERequest (| Channel, "[LinkDoc( 0," + sQ + sDocPath + sQ + "," +
sQ + sTitle + sQ+ ")]")

DDETer m nate (| Channel)
End Sub

Displaying a Message Dialog Box

Syntax [MsgBox(<message>,<style>)]

The MsgBox function displays a standard Windows message dialog box.

70



Integrating With GoldMine

PARAMETERS

The MsgBox function accepts two parameters.

The first parameter is the message to display within the dialog box. Enclose this
parameter in quotation marks (").

The second parameter is the optional style of the message box. This value is the sum
of the following options:

MsgBox Style Values (2nd parameter)

Value Meaning

0 Display OK button only

1 Display OK and Cancel buttons

2 Display Abort, Retry, and Ignore buttons
3 Display Yes, No, and Cancel buttons
4 Display Yes and No buttons

5 Display Retry and Cancel buttons

16 Display Stop icon

32 Display Question Mark icon

48 Display Exclamation Mark icon

64 Display Information icon

128 First button is default

256 Second button is default

512 Third button is default

RETURN VALUE

The MsgBox function returns the following values:

MsgBox Return Values

Return Description

OK button selected

Cancel button selected

Abort button selected

Retry button selected

Ignore button selected

Yes button selected

N~N[fojloa|lh~A|W|IN|E

No button selected

71




Integrating With GoldMine

EXAMPLE
The following example shows how to display a message dialog box in GoldMine and
return the result.

Note that the example below is written in Visual Basic for Applications, and the
DDElnitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Mai n()

Di m | Channel As Long
Dim sRet As String
DimsQ As String

sQ = Chr (34)
| Channel = DDElnitiate("GoldM ne", "Data")
sRet = DDERequest (| Channel, "[MsgBox(" + sQ + "Press a Button, Any

Button" + sQ+ ", 4)]")
If ret$ = "6" Then

MsgBox ("Yes was pressed")
El se

MsgBox ("No was pressed")
End |f
DDETer m nate (| Channel)
End Sub

Adding a Merge Form

Syntax [INEWFORM(<apptype>,<filepath>,<title>,<macro>, <templatetype>,<flags>)]

The NewForm function adds a merge template record into the Merge Forms window
in GoldMine. This function is used primarily by the document merge link
installation macro; however, the function can also be used to add additional merge
templates from a user-written application.

PARAMETERS

The NewForm function takes up to six parameters; the first three parameters are
required, and the last three parameters are optional.

The first parameter is the type of document to which the new form record will point.
This value must be a valid Application Identifier, such as Word.Document.6, that
corresponds to an entry in the Registration Database. Enclose this parameter in
quotation marks (").

The second parameter is the fully qualified path and filename of the template file.

The third parameter is the title of the document as it should appear in the Merge
Forms browse window. Enclose this parameter in quotation marks (").

72



Integrating With GoldMine

The fourth parameter is the name of an optional DDE function to be called after the
template is loaded by the linked application. If this parameter is not specified, the
default function is MAINMENU. Enclose this parameter in quotation

marks (").

The fifth parameter is the optional type of template. If this parameter is not specified,
the template type is assumed to be Document. Enclose this parameter in quotation
marks ("). GoldMine accepts the following values for this parameter:

Document Types

Type Description
0 Document

1 Spreadsheet
2 Other

The sixth parameter is a three-character field corresponding to the values of the Link
To Doc, Save History and Allow Hot Link options on the Form Setup dialog box. To set
(check) one of these options, 1 is passed; to reset (uncheck), 0 is passed. Enclose this

“

parameter in quotation marks (“).

Flag Values
Position Description
0 Link To Doc check box
1 Save History check box
2 Allow Hot Link check box

RETURN VALUE
The NewForm function returns a form number.

EXAMPLE

The following example shows how to create a merge form entry in GoldMine, using
the currently active Word Document.

Note that the example below is written in Visual Basic for Applications, and the
DDElInitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Public Sub Main()
DimsQ As String

Di m | Channel As Long
Dimi Result As Integer
Dim sDocTitle As String
Dim sFul | Nane As String
Di m sAppNanme As String
Dim FSDl g As Di al og

'Gol dM ne I's Not running.

73



Integrating With GoldMine

SQ = Chr (34)
If Not (Tasks.Exists("GoldM ne")) Then

MsgBox Pronpt:="Col dM ne is NOT Running", Buttons:=vbCritical,
Title:="Save As Merge Forni

CGoTo Bye
End |f
| Channel = DDElnitiate("GoldM ne", "Data")
i Result = Di al ogs(wdDi al ogFi | eSunmar yl nf 0) . Show
If iResult = 0 Then
GoTo Bye
End |f
sDocTitle = sQ + Di al ogs(wdDi al ogFi | eSummarylnfo). Title + sQ
i Result = Di al ogs(wdDi al ogFi | eSaveAs) . Show
If iResult = 0 Then
GoTo Bye
End If
Acti veDocument . Save
sFul | Nane$ = sQ + ActiveDocunent. Ful | Nane + sQ
sAppNanme = sQ + "[CGol dM neLink()]" + sQ

For mMNo$ = DDERequest (| Channel , "[ NewFor m(Word. Docurent. 8," + sFul | Name$ +
"," + sDocTitle$ + "," + sAppNane + ")]")

Acti veDocunent . Saved = Fal se
Acti veDocunent . SaveAs Fil eNane: =sFul | Nane$, Fil eFor mat: =wdFor mat Tenpl at e
StatusBar = "Document has been saved as a Gol dM ne Merge Fornf
Bye:
I f | Channel Then
DDETer mi nat e | Channel
End | f
End Sub

Creating a Group

Syntax [NEWGROUP(<ref>,<code>,<user>)]

The NewGroup function is used to create an empty group. This function must be
called prior to adding group members with the NewMember function.

PARAMETERS

The NewGroup parameter takes up to three parameters; the first parameter is
required, the last two are optional.

The first parameter is the Reference for the new group. Enclose this parameter in
quotation marks ().

The second parameter is the optional sort Code for the group. This parameter must
be passed in quotation marks if it contains any embedded spaces or delimiting
marks.

74



Integrating With GoldMine

The third parameter is the optional user name to whose groups list the new group
will be added. If this parameter is not passed, the new group will be added to the
currently logged user’s list of groups. Enclose this parameter in quotation

“"

marks ().
RETURN VALUE
The NEWGROUP function returns a value representing the GROUP NUMBER of the

new group. Zero is returned if the group could not be added. The GROUP NUMBER
value is used by the NewMember function to add members to the new group.

EXAMPLE

The following example shows how to create a group called “New Group” and make
the current contact a member of that group.

Note that the example below is written in Visual Basic for Applications, and the
DDElnitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Main()

Di m | Channel As Long
Dim sGoupNo As String
Di m sAcountNo As String
DimsQ As String
DimsRet As String

sQ = Chr (34)
| Channel = DDElnitiate("GoldM ne", "Data")
sG oupNo = DDERequest (| Channel , "[ New&G oup(" + sQ + "New Group" + sQ +

"+ sQE New +sQ+ )]
I f sGoupNo <> “0” Then
sAccount No = DDERequest (I Channel, "Contact 1->Account No")

sRet = DDERequest (| Channel, "[ NewMenber (" + sQ + sGoupNo + sQ + "," +
sQ + sAccountNo + sQ + "," + sQ + "New Menber" + sQ+ "," + sQ + "Sort"
+sQ+ ")]")

If sRet = "" Then
StatusBar = "Error Creating New Menber"

El se
StatusBar = "Group Created and Menber Added.

End |f

El se

StatusBar = "Error Creating New G oup”

End |f

DDETer mi nate (| Channel)

End Sub

75



Integrating With GoldMine

W

Adding a Group Member

Syntax [NEWMEMBER(<groupno>,<accno>,<ref>,<code>)]

The NewMember function is used to add a member to a group created with the
NewGroup function.

PARAMETERS

The NewMember function takes up to four parameters; the first two parameters are
required, and the last two are optional.

The first parameter is the GROUP NUMBER of the group to which the member will
be added. This value is returned by the NewGroup function. Enclose this parameter
in quotation marks ().

The second parameter is the account number of the contact record to add to the
group. Enclose this parameter in quotation marks (").

The third parameter is the optional group member Reference. Enclose this parameter
in quotation marks (").

The fourth parameter is the optional group member sort Code. Group members are
ordered alphabetically by the value in this field. Enclose this parameter in quotation
marks (").

EXAMPLE
See “Creating a Group” on page 74.

Creating a Macro

Syntax [PLAYMACRO(<Macro>,<wait>)]

A macro groups together a series of commands, keystrokes, and/or mouse clicks
into a one-step operation. You can create a macro to automate a sequence of tasks
that you perform frequently in GoldMine.

PARAMETERS

The PlayMacro function takes two parameters that identify the macro and assign a
wait state.

The first parameter identifies the macro. Either the number for the currently logged
user or a valid macro filename can be used to identify a macro.

IDENTIFYING A MACRO BY NUMBER
Each user can create up to 100 macros from the GoldMine toolbar. Each macro can be
assigned an optional numeric identification from 800 to 899. For example, you can assign
800 to identify your first macro, 801 to identify your second macro, and so on.

For details about creating a macro from the GoldMine toolbar, see “Customizing the
GoldMine Toolbar” in the online Help.

76



Integrating With GoldMine

IDENTIFYING A MACRO BY FILE NAME

You can assign a file name to identify the macro, such as
C:\GOLDMINE\MACROS\JOHN.801.

The second parameter assigns a wait state that determines GoldMine availability to
process another macro or task while the current macro executes. To set GoldMine to
wait for the currently executing macro to finish before starting another task, set the
parameter to 1. For example, if you are setting up a sequence of macros to run
tutorial lessons, you want GoldMine to wait for each lesson to finish before
executing the next macro that will run the following lesson.

To allow GoldMine to perform background processing, such as indexing, while the
macro(s) execute, set the parameter to 0.

RETURN VALUE

The PlayMacro function returns an integer value based on the wait parameter; that
is, GoldMine availability to process a task in addition to the currently running
macro. If the wait parameter is 0 (GoldMine does not wait for the macro to finish to
process another task), the PlayMacro function will always return 1. If the wait
parameter is 1 (GoldMine will wait for the current macro to finish before processing
another macro or task), the PlayMacro function will return either 0 or 1 under the
following conditions:

PlayMacro Return Values

Return Description
0 Error occurred during macro playback
1 Macro played successfully

EXAMPLE

The following example shows how to play back a macro via DDE.

To prevent unwanted macros from being executed, some parts of this example have
been commented out.

Note that the example below is written in Visual Basic for Applications, and the
DDElnitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see “Establishing a DDE Conversation” on page 31.

Sub Mai n()
Di m | Channel As Long
Dim sRet As String
DimsQ As String

sQ = Chr(34)
'un comment the following line to execute
'l Channel = DDElnitiate("GoldM ne", "Data")

77



Integrating With GoldMine

'Pl ay macro 800 for current user
sRet = DDERequest (| Channel, "[PlayMacro(800,0)]")

'Pl ay Macro 802 for specified use (BILL)

sRet = DDERequest (I Channel, "[EXPR(" + sQ + "C:\ GOLDM NE\ MACRCS\ BI LL. 802"
+sQ+ ")]1")
End Sub

You can also play a macro from the command line (DOS prompt). Executing a macro from the
command line can be useful in running functions at night, such as indexing, running an Automated
Process, or synchronizing with remote sites with a transfer set created via macro. You can either
identify a macro by an identification number, like GMW4 /m:801, or by file name like GMW4 /m;c:
\index.801. If necessary, the command line statement can start GoldMine and then, once started,
run the macro.

Optional switches include:

/m:  Logs in automatically to GoldMine

/u:lusername]  Provides the username entry to log in to GoldMine

/p:[password] Provides the password entry to log in to GoldMine

If running the Plus! Pack with Windows, you can run a macro from the System Agent by placing a
command line switch for GoldMine in the Program field of the Schedule a New Program dialog box
that will run a macro. For example, to log in John with his username and password, then run John’s
first macro, place the following macro in the System Agent:

GMWS5 /u:john /p:pswd /m:800

Where GMWS5/ starts Goldmine, u:john/is login user John, p:pswd/ enters the password
password, and m:800 runs first macro.

Creating and Sending a Pager Message

Syntax [SENDPAGE(<Message>,<From>,<T0>)]

The SendPage function allows you to create and send a message to the pager of a
GoldMine user. The function consists of the following components:

<Message> can consist of any text message that you create with this function to send
to a pager; most pages can accept messages of
70-100 characters.

<From> includes the sender’s name as an optional “signature.”

<To> identifies an optional GoldMine user who will receive the pager message.
Information about the pager must be entered in the Edit|Preferences|Pager tab, such
as ID code or PIN number, telephone number of the pager, and maximum message
size in characters that the pager can accept.

78



Integrating With GoldMine

RETURN VALUE
The SendPage function can return one of two values.

SendPage Return Values

Return Description
0 Error occurred during the attempt to send the message to the pager
1 Pager message was transmitted successfully

EXAMPLE

The following example sends the message “This is a pager message” from John Doe:

Note that the example below is written in Visual Basic for Applications, and the
DDElnitiate and DDERequest functions are not a part of Visual Basic 6.0. DDE
functionality is performed via the LinkRequest method in a textbox. For more
information, see Establishing a DDE Conversation on page 31.

Sub Mai n()
Di m | Channel As Long
DimsMsg As String
Dim sFrom As String
DimsRet As String
DimsQ As String

sQ = Chr(34)
| Channel = DDElnitiate("GoldM ne", "Data")
sMsg = "This is a pager nessage"
sFrom = "Jon Doe"
sRet = DDERequest (| Channel, "[SendPage(" + sQ + sMsg + sQ + "," + sQ +
sFrom+ sQ + ")]")
End Sub

Displaying a Message in the GoldMine Status Bar

Syntax [StatusMsg(<message>,<delay>)]

The StatusMsg function displays a message in the GoldMine status bar.

PARAMETERS

The StatusMsg function takes two parameters. Enclose each parameter in quotation
marks (").

First parameter is the message.
Second parameter is an optional delay, after which time the message is removed

from the status bar.

EXAMPLE
See “RecNo” on page 44.

79



Integrating With GoldMine

Converting TLog Timestamps

Syntax [SyncStamp(<stamp>)]

The SyncStamp function converts a TLog timestamp to a date and time
representation, and from a date and time representation back to the TLog time stamp
format.

PARAMETER

The SyncStamp function takes one parameter. Enclose the parameter in quotation
marks (").

RETURN VALUES

When the <stamp> string parameter is exactly 17 characters long, formatted as
Date:Time in form of CCYYMMDD:HH:MM:SS, the return string is in TLog time
stamp format, exactly seven characters long. When the <stamp> parameter is seven
characters long, and formatted as a TLog timestamp, the return string is formatted as
CCYYMMDD:HH:MM:SS. An empty return string indicates an error.

EXAMPLE 1

The following example converts February 1, 1998 at 7:01 p.m. to a TLog time stamp
format.

[ SyncSt anp("19980201: 19: 01: 30") ] returns "+#G<N2"

EXAMPLE 2

The following example converts a TLog time stamp format to the date and time of
February 1, 1998 at 7:01 p.m.

[ SyncSt anp(" +#G><N2") ]
returns "19980201: 19: 01: 30"

DDE Macros

To facilitate the use of DDEAUTO fields, GoldMine allows you to select a macro as
the service item. Upon encountering a DDE service item that starts with an
ampersand (&), GoldMine searches an internal table of macro names. If a match is
found, the macro is processed and the result is returned, as if a DDE function or
expression had been used.

Most macros are sensitive to the setting of the RECORDOBJ function’s SETRECORD
subfunction. This DDE function is used primarily to gain access to additional
contacts and other supplementary information. When the SETRECORD type is set to
PRIMARY, the following macros will return the value from the corresponding fields
in the primary information portion of the contact record. When the SETRECORD
type is set to CONTACTS (additional contacts), or another supplementary record
type, the macros will return the value from the corresponding field in the
supplementary file (CONTSUPP.DBF).

The following macros can be used as DDE service items:

80



Integrating With GoldMine

&Address

&Addressl

&Address?2

&BrowseRecNo

&CalRefresh

&City

&CityStateZip

Returns a string containing the values of both &Address1 and
&Address?2, separated by a carriage return and line feed character. If
either &Address1 or &Address2 does not contain any data, a single line
of data is returned, without the carriage return and line feed character.
This macro can be used to perform rudimentary blank line suppression
within linked applications that do not support blank address line
suppression internally.

The action of this macro string is similar to the action of the &Address
macro. The &Address2 macro can be used to return an additional contact
address by using the RECORDOBJ SETRECORD subfunction.

Returns the first Address field from the active contact record. Typically, this
value will be extracted from the Address1 field in the primary display
portion of the contact record; however, when the RECORDOBJ
SETRECORD subfunction has been used to change the returned record
type to CONTACTS, then GoldMine returns the value from the Address1
field on the additional contact record, if a value is entered. When the
Address1 field on the additional contact record is blank, then the
&Address1 macro returns the value in the Addressl1 field in the primary
display portion of the contact record. When the RECORDOBJ
SETRECORD type is set to return a record type other than CONTACTS,
the &Address1 macro returns the value in Addressl1 field in the primary
display portion of the contact record.

Returns the second Address field from the active contact record. Typically,
this value will be extracted from the Address2 field in the primary display
portion of the contact record; however, when the RECORDOBJ
SETRECORD subfunction has been used to change the returned record
type to ADDITIONAL, then GoldMine returns the value from the Address2
field on the additional contact record, if an entry exists in the Address?2 field
on the additional contact record. When the Address2 field on the additional
contact record is blank, then the & Address2 macro returns the value in the
Address2 field in the primary display portion of the contact record. When
the RECORDOBJ SETRECORD type is set to return a record type other
than PRIMARY or ADDITIONAL, the &Address2 macro returns the value
in the Address2 field of the primary display portion of the contact record.

Xbase: Returns the record number of the last selected record in a browse
window.
SQL: Returns the record ID of the last selected record in a browse window.

Refreshes the graphical calendar display. Set up GoldMine to run this
macro after adding calendar records using DDE.

Returns the City field from the active contact record. The action of this
macro string is similar to the action of &Address1. The &City macro can
be used to return an additional contact city by using the RECORDOBJ
SETRECORD subfunction.

Returns a format string of text containing the City, State, and Zip fields
from the active contact record. This string is returned in the following format:
City, State Zip

The action of this macro string is similar to the action of &Addressl. The
&CityStateZip macro can be used to return an additional contact city,
state, and ZIP Code by using the RECORDOBJ SETRECORD
subfunction.

81



Integrating With GoldMine

&CommonDir

&Contact

&Country

&Diall

&Dial2

&Dial3

&DialFax

&EmailAddress
&Fax

&Filter
&FirstName

&FullAddress

Xbase: Returns the path information for the directory where the contact
sets are located.
SQL: Returns the BDE alias where the contact sets are located.

Returns a Contact name from the active contact record. Normally, this
value will be extracted from the Contact field in the primary display portion
of the contact record; however, the RECORDOBJ SETRECORD
subfunction can be used to change the returned record type to additional
contact, or another type of supplementary record. When the RECORDOBJ
SETRECORD type is set to return record types other than PRIMARY, the
&Contact macro returns the value in Contact field in CONTSUPP for the
current supplementary record.

Returns the Country field from the active contact record. The action of this
macro string is similar to the action of &Address1. The &Country macro can
be used to return an additional contact country by using the RECORDOBJ
SETRECORD subfunction.

Returns the Phonel entry from the active contact record. The returned
phone number is formatted for dialing. GoldMine applies the same rules
used to dial the phone via TAPI. If selected, PREDIAL.INI settings are
applied to phone number selection.

Returns the Phone2 entry from the active contact record. For details, see
&Diall above.

Returns the Phone3 entry from the active contact record. For details, see
&Diall above.

Returns the FAX entry from the active contact record. For details, see
&Diall above.

Returns the primary e-mail address for the currently selected contact.

Returns the fax number as it should be sent to an auto-dialer for automatic
fax transmission.

Returns the activated filter expression.
Returns the first name of the current contact.

Returns a string containing the complete address for the contact record,
composed of values of &Address1, &Address2, &City, &State, and &ZIP.
The action of this macro string is similar to the action of &Address1. The
&FullAddress macro can be used to return an additional contact address by
using the RECORDOBJ SETRECORD subfunction.

82



Integrating With GoldMine

&GetRoTabID

&GetRoTabPos

&GoldDir

&LastFirstName

&LicUsers

&LicUsersAvailable

&NameAddress

Returns the ID of the currently selected tab. Typically, this value will verify
that the correct tab is selected when a user starts a custom application.
The following values are valid:

0 - Summary

1 - Fields

2 - Notes

3 - Contacts

4 - Details

5 - Referral

6 - Pending

7 - History

8 - Links

9 - Member

10 - Tracks

11 - Opps

12 - Projects

13 - Tickets

The following example tests the selection of the Details tab:
ch=DDElInitiate(“GoldMine”, “Data”)

If DDERequest$(Ch, “&GetRoTabID”) <> “4” Then

MsgBox “You must select a detail record first”

End If

Returns the currently selected tab position. Since the tabs can be
rearranged, this method is not always reliable for determining the currently
selected tab. For details, see &GetRoTabID.

Xbase: Returns path information for the directory in which GoldMine is
installed.
SQL: Returns path information for BDE alias in which GoldMine is installed.

Returns the name of the current contact in the format:
last name, first name

Returns the number of concurrent users allowed to log in to the installed
copy of GoldMine.

Returns the number of users allowed to log in to the installed copy of
GoldMine license.

Returns a string containing the contact’'s name, company, and complete
address of the current contact record. Each address line is separated by a
carriage return and line feed, and the entire string is formatted so that the
string can be inserted directly into a merge template. If any of the address
lines on the contact record is empty, that address line will be suppressed.
This macro can be used to perform rudimentary blank line suppression
within linked applications that do not support blank address line
suppression internally.

The action of this macro string is similar to the action of the &ADDRESS
macros, and the &NAMEADDRESS macro can be used to return an
additional contact address by using the RECORDOBJ SETRECORD
subfunction.

83



Integrating With GoldMine

&NameTitleAddress

&NewReclD

&Notes

&Phone

Returns a string containing the contact’s name, title, department, company,
and complete address of the current contact record. Each line is separated
by a carriage return and line feed, and the entire string is formatted so that
the string can be inserted directly into a merge template. If any of the lines
on the contact record is empty, that line will be suppressed. This macro can
be used to perform rudimentary blank line suppression within linked
applications that do not support blank address line suppression internally.
The action of this macro string is similar to the action of the &ADDRESS
macros, and the &NAMETITLEADDRESS macro can be used to return an
additional contact address by using the RECORDOBJ SETRECORD
subfunction.

Returns a unique record ID, which can be used when creating new records.

Returns the Notes from the active contact record. Typically, this value will
be extracted from the Notes field in the primary display portion of the
contact record; however, the RECORDOBJ SETRECORD subfunction can
be used to change the returned record type to additional contact, or another
type of supplementary record. When the RECORDOBJ SETRECORD type
is set to other than PRIMARY, the &TITLE macro returns the value in Notes
field in CONTSUPP for the current supplementary record.

Returns a telephone number from the selected contact record.

The action of this macro string is similar to the action of the &ADDRESS1.
The &PHONE macro can be used to return an additional contact telephone
number by using the RECORDOBJ SETRECORD subfunction.

84



Integrating With GoldMine

&Profile(s)

Two related macros:

&Profile: Returns the first matching profile record for the selected contact.

&Profiles: Returns all profile records for the selected contact.

Both of these macros take optional parameters. Each parameter must be

separated by a period (.). Although GoldMine does not typically pass

parameters with a DDE macro, the structure of &Profiles must be different

for DDE fields in Microsoft Word document templates, which do not take

DDE commands.

The following examples show the syntax for the &Profile(s) macros:
&Profile Exanple 1

&Profile. Profil eNanme. Ref erence. Fl ags

Retrieves the first profile that matches the ProfileName and Reference.

In both of the above examples, the Reference parameter is optional. If
passed, the Reference parameter acts as a “begin with” condition on the
profile reference. If the Reference parameter is not passed, all ProfileName
profiles are evaluated.

The optional Flags parameter has the following values:

2 Returns the extended profile fields

4 Returns the ProfileName and Reference

The &Profile(s) macro can easily fill in a Word table with the selected
contact’s profile information because tabs separate each field value, and a

CRILF separates each profile record.
&Profile Exanple 2

The following example returns the first e-mail address of the contact:
&Profile. E-mai| Address

&Profiles Exanple 1

The following example returns all the computer profiles that begin with the
word notebook:
&Prof i | es. Conput er . Not ebook

&Profiles Exanple 2

The following examples use the Flags parameter to specify the profile fields
to return:
&Prof i | es. Conput er . Not ebook
Not ebook Thi nkPad 770]|
Not ebook Conpaq Elite|
Not ebook Del | 1200|

&Prof i | es. Conput er . Not ebook. 2
Conput er | Not ebook Thi nkPad 770|
Conput er | Not ebook Conpaq Elite|
Conput er | Not ebook Del | 1200] |

&Prof i | es. Conput er . Not ebook. 4
Conput er | Not ebook Thi nkPad 770| | BM 233Me|
Conput er | Not ebook Conpaq Elite| Conpaq| 200nz|
Conput er | Not ebook Del |l 1200| Del | | 166nz|

85



Integrating With GoldMine

&RoTabPage

&SerialNo

&SetRoTab#

&ShutDown

&State

&SysDir

&Sysinfo

&Title

&User_Var

Returns the currently selected tab. Typically, this value will verify that the
correct tab is selected when a user starts a custom application. Values
between 1 and 9 represent tabs in the first row of tabs; for example, 1
represents the Summary tab. Values between 10 and 18 represent tabs in
the second row, and 19-27 represent tabs in the third row.
The following example tests the selection of the fifth (Profiles) tab:
ch=DDEl ni ti ate( “Gol dM ne”, “Data”)
| f DDERequest $(Ch, “&RoTabPage”) <> “5” Then
MsgBox “You nust select a profile record
first”
End |f

Returns the serial number of the installed GoldMine program.

Selects the tab that corresponds to the number (represented by #) in the
active contact record.
&Set RoTab# Exanpl e

&Set RoTab3
Displays the Notes tab in the contact record.

Logs out the currently logged user, and quits GoldMine.

Returns the State field from the active contact record. The action of this
macro string is similar to the action of the &RADDRESS. The &STATE
macro can be used to return an additional contact state by using the
RECORDOBJ SETRECORD subfunction.

Returns the GoldMine system directory.

Displays system information as returned by Help>About GoldMine>System
Info.

Returns the Title from the active contact record. Normally, this value will be
extracted from the Title field in the primary display portion of the contact
record; however, the RECORDOBJ SETRECORD subfunction can be
used to change the returned record type to additional contact, or another
type of supplementary record. When the RECORDOBJ SETRECORD type
is set to other than PRIMARY, the &TITLE macro returns the value in Title
field in CONTSUPP for the current supplementary record.

Returns the defined field value from all users, a specified user, or the
currently logged user. For details on defining values, see “Defining Field
Values for use with External Applications” in Maintaining GoldMine.

The &User_Var macro allows GoldMine users to store specific data that
can be retrieved later into applications that are linked via DDE with
GoldMine. This macro can be defined in the [user_var] section of both the
GM.INI and the username.INI of GoldMine.

Usage Syntax:

&User Var. <vari abl e nane>. <Gol dM ne user name>

Example:

&User _Var. Territory. Dan

(Where <variable name> is a descriptive name of the macro and
<GoldMine username> assigns a defined value to a specific GoldMine
user.) <GoldMine username> is optional, as GoldMine will assign these
values to the current GoldMine user.

86



Integrating With GoldMine

&UserFullName

&UserName
&Version
&WebSite
&ZIP

Returns the full name of the currently logged GoldMine user as the name
appears in the FullName field in the Users Master File for the user.

Returns the login name of the currently logged GoldMine user.
Returns the version number of the installed GoldMine program.
Returns http://<Web site> for the active contact.

Returns the Zip field from the currently active contact record. The action of
this macro string is similar to the action of the &ADDRESS1. The &ZIP
macro can be used to return an additional contact ZIP Code by using the
RECORDOBJ SETRECORD subfunction. The DDE macro can be used to
reindex or rebuild the database.

DDE Macros for Merge Forms

The following DDE macros are used primarily for creating DDE links to GoldMine
through the Merge Forms function. The values returned by each of these macros are
updated by GoldMine when a Merge Form is launched by selecting Edit, Link, Print
or Fax from the Merge Forms dialog box.

&PARAM1
(filename)

&PARAM2
(action)

Returns the path and filename of the document template associated with the merge
form selected when Edit, Link, Print, or Fax was selected. This value is obtained
from the Template File field in the merge form’s Form Setting dialog box.

Returns a value indicating whether the Edit, Link, Print, or Fax button was selected
to launch linked application.

&PARAM?2 Parameters

Value Description

1 Edit selected

2 Link selected

3 Print selected

4 Fax selected

&PARAM3 Returns a value corresponding to the setting of the Record Range options on the
(range) Merge Forms dialog box when the Edit, Link, Print, or Fax button was selected.

&PARAM3 Parameters

Value Description

1 This contact selected

2 All contacts selected

3 Forward to last selected

&PARAM4 Returns a value corresponding to the setting of the Primary and Additional check

(scope)

boxes on the Merge Forms dialog box when the Edit, Link, Print, or Fax button
was selected.

87




Integrating With GoldMine

&PARAM4 Parameters

Value Description

1 Primary checked

2 Additional checked

3 Both Primary and Additional checked

&PARAM5 Returns a value corresponding to the status of the Link to Doc, Save History,
(flags) and/or Allow Hot Link check boxes on the Merge Forms dialog box. In addition,
the returned value determines whether the form was merged as the result of an
Automated Processes action.
Returns a seven-character string. Each position of the string can contain either 0,
indicating the item was not checked (or Automated Processes is not active), or 1,
indicating the item was checked (or Automated Processes is active).

&PARAMS Parameters

Position Description

1 Link to Doc

2 Save History

3 Allow Hot Link

4 Unused

5 Unused

6 Unused

7 Automated Processes status

&PARAM6 Returns a value containing the record number of the last Linked Document

(LinkDoc supplementary record created as a result of launching a Merge Form. When you

record launch a merge form with Link to Doc selected, GoldMine creates a linked

number) document record to hold the saved document. This value can be saved and used to
update the linked document record by passing the record number to the LinkDoc
DDE function.

&PARAM7 Returns a pointer to a minimized contact record that is created when Print or Fax is

(contact selected on the Merge Forms dialog box, and the Record Range is All Contacts

record or Forward to Last. This value can then be passed to the RecordObj function to

pointer) further control a document merge from the linked application.

&PARAMS8 Returns the merge code entered in the Merge code field of the Merge Forms
(merge code  dialog box.
value)

&PARAM9 Returns the RecNo or ReclID of the history record created by GoldMine. This macro
(history is useful for updating the history record.
record)

88



Integrating With GoldMine

DDE Macros for the GoldMine License

The following DDE macros return data for the current GoldMine license. The
descriptions for each macro include the corresponding field name from the form that
appears in the Registration tab of the GoldMine Net-Update window. For details on
the Net-Update process, see “Updating your Copy of GoldMine” in the online Help.

&LiclnfoLicTo
&Licinfo_Contact
&Liclnfo_LicEmail
&Liclnfo_Phone
&Liclnfo_Fax
&Liclnfo_Addressl
&Liclnfo_Address2
&Liclnfo_City
&Liclnfo_State
&Lliclnfo_Zip

&Liclnfo_Country

Returns the Organization entry from the registration form.

Returns the Contact Name entry from the registration form.
Returns the E-mail address entry from the registration form.
Returns the telephone number entry from the first Phone/Fax field.
Returns the fax number entry from the second Phone/Fax field.
Returns the Address1 entry from the registration form.

Returns the Address?2 entry from the registration form.

Returns the city entry from the first City/State field.

Returns the state or province entry from the second City/State field.
Returns the ZIP Code entry from the first Zip/Country field.

Returns the country entry from the second Zip/Country field.

89






Using GMXS32.DLL for Database
Access and Sync Log Updates

The GoldMine GMXS32.DLL is a standard dynamic-link library (DLL) that offers
developers efficient methods to access GoldMine databases and update GoldMine
synchronization logs when external applications update GoldMine data. Most

development environments can load GMXS32.DLL. GoldMine does not need to run
to use GMXS32.DLL.

GMXS32.DLL installs into the \WINDOWS\ SYSTEM directory automatically with
GoldMine. Therefore, third-party developers do not need to distribute GMXS32.DLL
with their applications.

The actual file name for the API will vary depending on the version of GoldMine.
For versions of GoldMine in the 5.0 ranges, the dll is named GM5S32.DLL. For
versions in the 6.0 ranges, the dll is named GM6S32.DLL

For an in-depth discussion on interfacing with GoldMine, visit the
Public.GoldMine.Programming newsgroup, which you can access directly from the
GoldMine Web site at http://www.frontrange.com.

This document contains the information you need to:

e Load and initialize GMXS32.DLL

e Streamline integration with GoldMine

91



Integrating With GoldMine

e  Work with DataStream functions
e  Work with low-level data access functions

e Update GoldMine synchronization information when data is
changed by an external application not utilizing the GoldMine
APL

Passing Multiple Parameters to a Function

Each Name/Value (NV) set, or container, simply combines a “Name” and a “Value.”
In the following example:

Company=FrontRange Solutions
Company is the Name and FrontRange Solutions is the Value.

Using a set of NV pairs provides an easy mechanism to pass multiple parameters to
a function. The user can populate the NV pairs into a container, then execute a
Business Logic transaction against the container. The transaction adds extra pairs to
the container to return the results.

Since the NV container remains in memory until cleared, it can make several calls
without clearing all the previous values. This capability is useful to call the same
function with only slight changes to the values, such as when a return value of one
call is needed for a subsequent call.

Using the Business Logic methods, a developer can easily read and write GoldMine
data. Previously, integrating with GoldMine required a great familiarity with the
schema and methodology of GoldMine databases. The Business Logic functions
require less direct knowledge and provide a more standardized and secure way to
integrate with GoldMine. Business Logic functions wrap several other low-level calls
to perform common tasks. In addition, the Business Logic functions take user
security restrictions into account when reading and updating GoldMine data.

Comparing Low Level/DDE Methodology to Business
Logic Methodology

We can compare an example flow to a common task using low level/DDE or
Business Logic. In the following example, you can see that Method 2 has a simpler
flow than Method 1.

METHOD 1: UPDATING A CONTACT RECORD USING THE LOW LEVEL FUNCTIONS OR DDE
1. Open the Contactl database.
2. Set the index tag.
3. Seek the contact record.
4. If not found, then Append a new record.
5

Replace field values.

92



Integrating With GoldMine

6. Close the database.
METHOD 2: UPDATING A CONTACT RECORD USING THE BUSINESS LOGIC
1. Load an NV Container with the values for the contact record.

2. Execute the WriteContact method.

Loading GMXS32.DLL and Logging In

The following section describes the functions available to load the BDE and log in to
a GoldMine table. For function prototypes and code examples in C++, Visual Basic
and Delphi, see the appendix on page 415.

If using C/C++, note that the GMXS32.DLL functions use the stdcall convention.
Before using any of the functions, you must perform the following steps:

1. GMXS32.DLL must be dynamically loaded in C/C++ (simply declare them in
VB).

2. GMW_LoadAPI function must be called to load the API with the set
parameters for the programmer to work with.

The GMW_UnloadAPI() function must always be called before terminating the
application and freeing the DLL.

The following functions initialize and close the API sessions:
e GMW_LoadAPI: loads set parameters for an API session

e GMW_UnloadAPI: closes the API session

Note: As of GoldMine Version 7.0, the Borland Database Engine is no longer used.
References to BDE in the following sections apply only to integrations
developed in GoldMine Version 6.7 or lower.

For GoldMine Version 6.7 or lower:

The GMW_LoadBDE function must be called to load the BDE and initialize the
database objects. The GMW_UnloadBDE() function must always be called before
terminating the application and freeing the DLL.

The following functions initialize and close the BDE sessions:
e GMW_LoadBDE: loads a BDE session
e GMW_UnloadBDE: closes the BDE session

Setting the SQL Database Login Name and Password
(GoldMine 6.7 or lower only)

This topic pertains to SQL only. GMW_SetSQLUserPass should be called
immediately prior to the GMW_LoadBDE call. GMW_SetSQLUserPass is required
only when accessing SQL tables, and will have no effect on Xbase tables. This

93



Integrating With GoldMine

function is not required if using DDE login credentials with versions of GoldMine
beyond 5.70.20222.

SYNTAX
int _stdcall GMW_SetSQLUserPass( char *szUserName, char
C/C++
*szPassword )
VB Public Declare Function GMW_SetSQLUserPass Lib "gm6s32.dll"
(ByVal strUserName As String, ByVal strPassword As String) As Long
PARAMETERS

The GMW_SetSQLUserPass function takes two parameters:
szUserName: specifies the SQL login name.
szPassword: specifies the SQL login name’s password.

RETURN VALUES
The GMW_SetSQLUserPass function returns the following values:

GMW_SetSQLUserPass Return Values

Return Description

0 Failure

1 Success
EXAMPLE

GWW Set SQLUser Pass("JON', "M/PASSWORD") ;

Loading an API Session (GoldMine 7.0 or higher)

SYNTAX

int GMW_LoadAPI( char *szSysDir, char *szGoldDir, char *szCommonDir,

Eie char *szUser, char *szPassword )

Public Declare Function GMW_LoadAPI Lib "gm6s32.dll" (ByVal strSysDir
VB As String, ByVal strGoldDir As String, ByVal strCommonDir As String,
ByVal strUser As String, ByVal strPassword As String) As Long

PARAMETERS
The GMW_LoadAPI function takes five parameters.

SzGoldDir: Specifies the location of CAL.DBF.
SzCommonDir: Specifies the location of CONTACT1.DBF.

SzUser: Specifies the GoldMine user name (must be UPPERCASE).

For API version 5.70.20222 and later: You may set this parameter to the value of
*DDE_LOGIN_CREDENTIALS* to use login credentials returned for the user logged
into a running copy of GoldMine through DDE. For GoldMine 6.7 or higher, you
may also use the Ul API equivalent.

94



Integrating With GoldMine

SzPassword: Specifies the user’s password (must be UPPERCASE).

For API version 5.70.20222 and later: You may set this to the return string from the

GetLoginCredentials DDE command if the User parameter is set to
*DDE_Login_Credentials*. The credential string is only valid for 30 seconds.

RETURN VALUES
The GMW_LoadAPI function returns the following values:

GMW_LoadBDE Return Values

Return Description

1 Success

0 API already loaded

-1 AP failed to load

-2 Cannot find license file

-3 Cannot load license file

-4 Cannot validate the license file username/password

-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

-8 General Failure

-9 No access to specified contact set for this user
NOTES

GMW_LoadAPI must be called before calling any function that accesses databases,
such as GMW_UpdateSyncLog and GMW_ReadImpTLog. GMW_Unload API must
be called before unloading the DLL. GMW_Load API may be called as many times as
necessary. Be sure to match a corresponding GMW_UnloadAPI for every call of
GMW_LoadAPIL

EXAMPLE

GWV LoadAPI ( "d:\\@Gw", "d:\\aw", "d:\\Gw\\deno", "JON', “PASS” );

O

GWV LoadAPI ("d:\\@Gw", "d:\\Gw", "d:\\GwW\\denm",

“*DDE_LOG N_CREDENTI ALS*”, szDDEReturnString);

Loading a BDE Session (GoldMine 6.7 or lower)

SYNTAX
ClC++ int GMW_L oadBDE( char *szSysDir, char *szGoldDir, char *szCommonDir,
char *szUser, char *szPassword )
Public Declare Function GMW_LoadBDE Lib "gm6s32.dll" (ByVal strSysDir
VB As String, ByVal strGoldDir As String, ByVal strCommonDir As String,
ByVal strUser As String, ByVal strPassword As String) As Long

95




Integrating With GoldMine

PARAMETERS
The GMW_LoadBDE function takes five parameters.

SzGoldDir: Specifies the location of CAL.DBF.
SzCommonDir: Specifies the location of CONTACT1.DBF.

SzUser: Specifies the GoldMine user name (must be UPPERCASE).

For API version 5.70.20222 and later: You may set this parameter to the value of
*DDE_LOGIN_CREDENTIALS* to use login credentials returned for the user logged
into a running copy of GoldMine through DDE.

SzPassword: Specifies the user’s password (must be UPPERCASE).

For API version 5.70.20222 and later: You may set this to the return string from the
GetLoginCredentials DDE command if the User parameter is set to
*DDE_Login_Credentials*. The credential string is only valid for 30 seconds.

RETURN VALUES
The GMW_LoadBDE function returns the following values:

GMW_LoadBDE Return Values

Return Description

1 Success

0 BDE already loaded

-1 BDE failed to load

-2 Cannot find license file

-3 Cannot load license file

-4 Cannot validate the license file username/password

-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

-8 General Failure

-9 No access to specified contact set for this user
NOTES

GMW_LoadBDE must be called before calling any function that accesses databases,
such as GMW_UpdateSyncLog and GMW_ReadImpTLog. GMW_UnloadBDE must
be called before unloading the DLL. GMW_LoadBDE may be called as many times
as necessary. Be sure to match a corresponding GMW_UnloadBDE for every call of
GMW_LoadBDE.

EXAMPLE
GWW LoadBDE( "d:\\GW", "d:\\GW", "d:\\GW\\dem", "JON', “PASS” );

O

GWN LoadBDE("d:\\Gw", "d:\\Gw", "d:\\GwW\\denm",
“*DDE_LOG N_CREDENTI ALS* 7, szDDERet urnString);

96



Integrating With GoldMine

Logging in a User

GMW_Login may be used to login a different user than was originally logged in
through GMW_Load API or GMW_LoadBDE.

SYNTAX

int GMW_L ogin(char *szUser, char *szPassword, char *szSQLUser, char

& Clah *szSQLPassword)

Public Declare Function GMW_Login Lib "gm6s32.dIl" (ByVal strUser As
VB String, ByVal strPassword As String, Optional ByVal strSQLUser As String,
Optional ByVal strSQLPassword As String) As Long

PARAMETERS

szUser: Specifies the GoldMine user name (must be UPPERCASE).

For API version 5.70.20222 and later: You may set this parameter to the value of
*DDE_LOGIN_CREDENTIALS* to use login credentials returned for the user logged
into a running copy of GoldMine through DDE.

szPassword: Specifies the user’s password (must be UPPERCASE).

For API version 5.70.20222 and later: You may set this to the return string from the
GetLoginCredentials DDE command if the User parameter is set to
*DDE_Login_Credentials*. The credential string is only valid for 30 seconds.

szSQLUser: Specifies the user’s SQL login name. Omit if using DDE login
credentials.

szSQLPassword: Specifies the user’s SQL password. Omit if using DDE login
credentials.

RETURN VALUES
The GMW_Login function returns the following values:

GMW_Login Return Values

Return Description

1 Success

0 Failure

-1 User does not have permission to open the current contact set.
EXAMPLE

GWV Logi n( "JOE", "PASS', "SA', "");

O

GWV Logi n( “*DDE_LOG N_CREDENTI ALS* 7, szDDEReturnString);

Closing an API Session (GoldMine 7.0 or higher)

SYNTAX

C/C++ int GMW_UnloadAPI()

97



Integrating With GoldMine

Public Declare Function GMW_UnloadAPI Lib "gm6s32.dll" () As

VB Long

RETURN VALUES
The GMW_UnloadAPI function returns the following values:

GMW_UnloadBDE Return Values

Return Description

0 Failure

1 Success
NOTES

If GMW_LoadAPTI is called, GMW_Unload API must be called before unloading the
DLL.

EXAMPLE
GMW_Unload API();

The following functions perform additional functions:

GMW_GetLicenselnfo: Returns GoldMine licensing information

Closing a BDE Session (GoldMine 6.7 or lower)

SYNTAX
CIC++ int GMW_UnloadBDE()
VB Public Declare Function GMW_UnloadBDE Lib "gm6s32.dIl" () As
Long

RETURN VALUES
The GMW_UnloadBDE function returns the following values:

GMW_UnloadBDE Return Values

Return Description

0 Failure

1 Success
NOTES

If GMW_LoadBDE is called, GMW_UnloadBDE must be called before unloading the
DLL.

EXAMPLE
GMW_Unload BDE();

The following functions perform additional functions:

GMW_SetSQLUserPass: Sets the SQL database login name and password

98



Integrating With GoldMine

GMW_GetLicenselnfo: Returns GoldMine licensing information

Logging in Multiple Users through the API

Some integrated solutions for GoldMine require more than one user logged into
GoldMine. These are usually some type of server application or a Web-based
interface. The following functions enable you to handle these situations.

The first function call you will make will still be the GMW_Load API or
GMW_LoadBDE function. You must enter a valid username to call this function, but
you can leave the password blank. You can also use *DDE_LOGIN_CREDENTIALS*
to call this function. Please see page 94 for more information on the GMW_Load API
or GMW_LoadBDE functions.

Logging In

To log in multiple users, use the GMW_MULogin function. Logging in a user with
this function will use a seat of your GoldMine license.

SYNTAX

int __stdcall GMW_MULogin ( char* szUser, char* szPassword, char*

Ces szSQLUser, char* szSQLPassword, char* szCommonDir )

Public Declare Function GMW_MULogin Lib "gm6s32.dIl" (ByVal strUser
VB As String, ByVal strPassword As String,ByVal strSQLUser As String, ByVal
strSQLPassword As String, ByVal strCommonDir As String) As Long

PARAMETERS
szUser is the GoldMine login name

szPassword is the GoldMine password

szSQLUser is the username for the MS SQL server

szSQLPassword is the password for the MS SQL server

szCommondir is to set a different, specific contact file directory for this user

RETURN VALUES
The GMW_MULogin function returns the following values:

GMW_MULogin Return Values

Return Description

>0 The session ID for this user

0 Failed to set TLS value

-1 Failed to load license file

-2 Failed to validate name and password
-3 No more seats available

99



Integrating With GoldMine

Return Description

-4 Unknown general exception

-5 User does not have access to the specified contact set.
Logging Out

To log out a user when multiple users are logged in, use the GMW_MULogout
function. This function will free the license seat previously used by the
GMW_MULogin function.

SYNTAX
C/C++ int __stdcall GMW_MULogout ( int nSessionID)
VB Public Declare Function GMW_MULogout Lib "gm6s32.dll" (ByVal
nSessionID As Long) As Long
PARAMETERS

nSessionlD is the integer value returned by the GMW_MULogin function

RETURNS
The function will return TRUE if the specified SessionID was valid.

Switching Between Login Sessions

If you are working with more than one login session, it is important to note that the
API functions always work on the last user logged in. The functions do not have a
parameter to specify which session (user) to operate on. In order to switch to a
different login session, use the GMW_MUBeginSession function.

SYNTAX
C/C++ int __stdcall GMW_MUBeginSession (int nSessionID)
VB Public Declare Function GMW_MUBeginSession Lib "gm6s32.dIl" (ByVal
nSessionID As Long) As Long
PARAMETERS

nSessionlD is the integer value returned by the GMW_MULogin function and
specifies which login session under which you want the API calls to operate.

RETURNS
The function returns the SessionID on success, and 0 on failure.

Special Consideration for Multi-Threaded Applications

There may be an instance when your application will not be able to guarantee that
every data request will go through the same thread that created the session, such as

100



Integrating With GoldMine

the case with Internet Information Server. If you try to access an API session from a
different thread than the one that created the session, you may encounter exceptions.

To handle these situations, use the GMXTP.DLL. Each of the functions in the
GMXS32.DLL is wrapped through the GMXTP.DLL, so there is no need to load both.
In addition, the above multiple login functions have slightly altered names:

GMW_TP_MULogin
GMW_TP_MULogout
GMW_TP_MUBeginSession

In addition, there is one additional function to be aware of,
GMW_TP_CopySecurityTokentoWorkthread.

SYNTAX
C/C++ GMW_TP_CopySecurityTokentoWorkThread ()
Public Declare Sub GMW_TP_CopySecurityTokentoWorkThread lib
VB “ ”
gm6s32.d11” ()

This function ensures that the thread that is attempting access gets the identity of the
working thread instead of the process. This function is especially important when
dealing with IIS Extensions.

Working with Business Logic Functions using the
Name/Value Pair Method

The following section describes the functions available for the programmer to
manipulate Name Value containers, used for accessing the high-level business logic
functions via the GMXS32.DLL. For function prototypes and code examples in C++,
Visual Basic and Delphi, see the appendix on page 415.

For information on which business logic functions are available, and their expected
name/value pairs, see .Business Logic Functions and Name/Value Pairs on Page 268.

NOTES

e These functions require that you are successfully logged into a GoldMine
database using the GMW_Load API or GMW_LoadBDE function.

¢ You must pass an empty NV container with all calls that do not take any parameters.

Creating an NV Container

GMW_NV_Create creates an NV container. This is the first step in using the
name/value pair containers. This is analogous to creating a structure to store
multiple variables indicating the values you wish to assign to fields in GoldMine.

101



Integrating With GoldMine

SYNTAX

C/C++ HGMNV __stdcall GMW_NV_Create()

VB Public Declare Function GMW_NV_Create Lib "gm6s32.dll" () As Long
EXAMPLE

IGMNYV = GMW_NV_Create

RETURN VALUE
Pointer to a new NV container

Creating an NV Container with Copied Values

GMW_NV_CreateCopy creates an NV container and copies the values from an
existing NV container.

SYNTAX
C/C++ HGMNV __ stdcall GMW_NV_CreateCopy(HGMNV hgmnv)
VB Public Declare Function GMW_NV_CreateCopy Lib "gm6s32.dll" (ByVal
hgmnv As Long) As Long

where hgmnv represents the pointer to the source NV container.

EXAMPLE
IGMNV2 = GMW_NV_CreateCopy(pGMNYV)

RETURN VALUE
Pointer to a new NV container.

Copying Values between NV Containers
GMW_NV_Copy copies the values from one NV container to another.

GMW_NV_Create or GMW_NV_CreateCopy must have previously created both NV

containers.
SYNTAX
void _stdcall GMW_NV_Copy (HGMNV hgmnvDestination, HGMNV
C/C++
hgmnvSource)
VB Public Declare Sub GMW_NV_Copy Lib "gm6s32.dll" (ByVal
hgmnvDestination As Long, ByVal hgmnvSource As Long)
PARAMETERS

hgmnvDestination is the pointer to the destination container.

hgmnvSource is the pointer to the source container.

102



Integrating With GoldMine

EXAMPLE
GMW_NV_Copy IGMNV2, IGMNV

RETURN VALUE
n/a

Deleting an NV Container

GMW_NV_Delete deletes an NV container and releases its memory. Be sure to call
this for all previously created containers before exiting your application.

SYNTAX
C/C++ void __stdcall GMW_NV_Delete(HGMNV hgmnv)
VB Public Declare Sub GMW_NV_Delete Lib "gm6s32.dIlI" (ByVal hgmnv As
Long)

where hgmnv is the pointer to the NV container to delete.

EXAMPLE
GMW _NV_Delete IGMNV

RETURN VALUE
n/a

Reading Values from an NV Container

GMW_NV_GetValue reads a value stored in an NV container. If the name does not
exit in the container, the default value is returned. This method is used to read data
out of the container returned from GoldMine. For example, after creating a contact,
you would call GMW_NV_GetValue to read the new Recid or Accountno assigned

to the contact.

SYNTAX
const char* __stdcall GMW_NV_GetValue(HGMNV hgmnv, const char*
CIC++
name, const char* DefaultValue)
Public Declare Function GMW_NV_GetValue Lib "gm6s32.dIl" (ByVal
VB hgmnv As Long, ByVal Name As String, ByVal DefaultValue As String) As
GMWStr
PARAMETERS

hgmnv is the pointer to a valid name value container
Name is the name of the value to return

DefaultValue is the default value if <Name> is null or does not exist.

103



Integrating With GoldMine

EXAMPLE
sValue = GMW_NV_GetValue (IGMNYV, “Accountno’, ‘(none)’)

RETURN VALUES

The value of the Name is returned. If the Name is null or does not exist, the
DefaultValue value is returned.

Storing NV Pairs in a Container

GMW_NV_SetValue stores a Name/ Value pair in the specified container. Use this
function to specify the values that you wish to assign to the GoldMine record
(contact, cal, history, etc). Call this function for each field value you need to assign.

SYNTAX
C/C++ void __ stdcall GMW_NV_SetValue(HGMNV hgmnv, const char* name,
const char* value)
VB Public Declare Sub GMW_NV_SetValue Lib "gm6s32.dll" (ByVal hgmnv As
Long, ByVal Name As String, ByVal Value As String)
PARAMETERS

hgmnv is the pointer to a valid name value container.
Name is the name of the value to set.
Value is the value to assign to <Name>.

EXAMPLE
GMW_NV_SetValue IGMNYV, ‘Phonel’, “(310)555-1212

RETURN VALUE
n/a

Searching for an NV Pair

GMW_NV_NameExists checks if the specified Name/Value exists within the NV
container.

SYNTAX
C/C++ long __ stdcall GMW_NV_NameExists(HGMNV hgmnv, const char* name)
VB Public Declare Function GMW_NV_NameExists Lib "gm6s32.dll" (ByVal
hgmnv As Long, ByVal Name As String) As Long
PARAMETERS

hgmnv is the pointer to a valid name value container.

Name is the name of the value to set.

104



Integrating With GoldMine

EXAMPLE
iResult = GMW_NV_NameExists (IGMNYV, ‘Phonel’)

RETURN VALUES

105



Integrating With GoldMine

GMW_NV_NameExists Return Values

Return Description
0 Value does not exist in container
1 Value exists in container

Removing one NV Pair

GMW_NV_EraseName removes a Name/ Value pair from the specified container.
This function is useful for removing the Recid name/value pair from a container that
has already been used once to create a new record. To reuse the container using all
of the same name/value pairs, the Recid name/value pair needs to be removed in
order to create another new record.

SYNTAX
C/C++ void __stdcall GMW_NV_EraseName(HGMNV hgmnv, const char* name)
VB Public Declare Sub GMW_NV_EraseName Lib "gm6s32.dIl" (ByVal hgmnv
As Long, ByVal Name As String)
PARAMETERS

hgmnv is the pointer to a valid name value container

Name is the name of the value to set

EXAMPLE
GMW_NV_EraseName IGMNYV, ‘Phonel’

RETURN VALUE

n/a

Removing all NV Pairs from a Container
GMW_NV_EraseAll removes all Name/ Value pairs from the specified container.

SYNTAX
C/C++ void __ stdcall GMW_NV_EraseAll(HGMNV hgmnv)
VB Public Declare Sub GMW_NV_EraseAll Lib "gm6s32.dIl" (ByVal hgmnv As
Long)
PARAMETER

hgmnv is the pointer to a valid name value container.

106



Integrating With GoldMine

EXAMPLE
GMW _NV_EFEraseAll IGMNV

RETURN VALUE

n/a

Totaling NV Pairs in a Container
GMW_NV_Count returns the number of Name/ Value pairs within the specified

container.
SYNTAX
C/C++ long __ stdcall GMW_NV_Count(HGMNV hgmnv)
VB Public Declare Function GMW_NV_Count Lib "gm6s32.dll" (ByVal hgmnv
As Long) As Long
PARAMETER

hgmnv is the pointer to a valid name value container.

EXAMPLE
i Count = GMW NV_Count | GV

RETURN VALUE
Number of NVs within the specified container.

Finding an NV Name

GMW_NV_GetNameFromIndex finds the name of the NV stored at a specific index
within the container. The first item in the container is at index value 1.

SYNTAX
ClC++ const char* __stdcall GMW_NV_GetNameFromIndex(HGMNV hgmnv, long
index))
VB Public Declare Function GMW_NV_GetNameFromindex Lib "gm6s32.dll"
(ByVal hgmnv As Long, ByVal index As Long) As GMWStr
PARAMETERS

hgmnv is the pointer to a valid name value container

Index is the item number to return.

EXAMPLE
sName = GMW NV_Get NameFr om ndex (1 GWNV, 3)

RETURN VALUE
The name stored at <Index> within the container.

107



Integrating With GoldMine

Finding an NV Value

GMW_NV_GetValueFromlndex finds and returns the value of the NV stored at the
specified index within the container. The first item in the container is stored an index
value 1.

SYNTAX
ClC++ const char* __stdcall GMW_NV_GetValueFromindex(HGMNV hgmnv, long
index)
VB Public Declare Function GMW_NV_GetValueFromindex Lib "gm6s32.dll"
(ByVal hgmnv As Long, ByVal index As Long) As GMWStr
PARAMETERS

hgmnv is the pointer to a valid name value container

Index is the item number to return

EXAMPLE
sValue = GMW_NV_GetValueFromIndex(pGMNYV, 3)

RETURN VALUE
The value stored at <Index> within the container.

Setting NV Pairs

GMW_NV_SetStr sets one or more Name/Value pairs. This function is used if you
would like to set multiple name/value pairs in a single call.

SYNTAX

void __ stdcall GMW_NV_SetStr(HGMNV hgmnv, char dimName, char

CIC++ dimVal, const char* pszValueStr)

Public Declare Sub GMW_NV_SetStr Lib "gm6s32.dll"* (ByVal hgmnv As
VB Long, ByVal strDImName As String, ByVal strDImVal As String, ByVal
ValueStr As String)

PARAMETERS
hgmnv is the pointer to a valid name value container.

DImName is the delimiter between the name and its value.*
DImVal is the delimiter between each NV pairs.*

ValueStr is the string containing the name values.

EXAMPLE
GWV NV _SetStr IGWNV,'=",";"',"' Conpany=CGol dM ne; Key1l=Cust"

GWV NV _SetStr |GV, ' & ,' & ,' Conpany&ol dM ne&Key1l&Cust'

* The delimiters may be the same.

108



Integrating With GoldMine

RETURN VALUE
n/a

Executing Business Logic Methods

All of the Business Logic methods are accessed through the GMW_Execute function.
You must be successfully logged into a GoldMine database for this call to work
properly. For details about Business Logic methods, see Chapter 6, “Working with
Business Logic Functions using the Name/Value Pair Method”, on pg 101.

SYNTAX
C/C++ long _stdcall GMW_Execute(const char *szFuncName, HGMNV hgmnv)
VB Public Declare Function GMW_Execute Lib "gm6s32.dIl" (ByVal
strFuncName As String, ByVal hgmnv As Any) As Long
PARAMETERS

FuncName is one of the various business logic functions described below.

hgmnv is the pointer to a Name/Value container.

EXAMPLE
GWVN Execute “WiteContact”, | GV

RETURN VALUES

GMW_Execute Return Values

Return Description
0 Failure
>0 Success

Working with Multi-Value Name/Value Pairs

Some business logic methods use a special name/value pair that contains multiple
values. In addition, a name/value pair may simply hold a string value, or it may hold
the handle(s) to one or more name/ value containers. The lifetime of an embedded NV
value is controlled by its parent. You do not need to call GMW_NV_Delete on it.

The following functions are used to manipulate and read multi-value pairs.

Determining the Type of a Name/Value Pair

The GMW_NV_GetValueType function is used to determine if a name/value pair is
a multi-value pair or a container.

109



Integrating With GoldMine

GOLDMINE API VERSION: 5.50.10111

SYNTAX
C/C++ long _stdcall GMW_NV_GetValueType(HGMNV hgmnv, const char *name)
VB Public Declare Function GMW_NV_GetValueType Lib "gm6s32.dll" (ByVal
hgmnv As Long, ByVal strName As String) As GMWNVValueType
PARAMETERS

hgmnv is the pointer to a Name/Value container.
Name is the name of the name/value pair for which you want to determine the type.

RETURN VALUES
Possible return values are as follows:

GetValueType Return Values

Value Description
GM_NV_VALUE_TYPE_SINGLE_NV The value is one NV Containers
GMW_NV_VALUE_TYPE_MULTI_NV The value stores multiple NV containers
GMW_NV_VALUE _TYPE_MULTI_STRING The value stores multiple string values

Determining the Position of an NV Container in an NV
Hierarchy

If the value in an NV pair contains another container, the container that holds the
second container is the parent of the second container. When there are no more
parents, or you are at the top level of the hierarchy, the container is considered the
root. The following functions will indicate whether the container is a parent or root,
or return the handle to the root or parent.

GOLDMINE API VERSION: 5.50.10111

SYNTAX
C/C++ BOOL _stdcall GMW_NV_IsRoot(HGMNV hgmnv)
Public Declare Function GMW_NV _IsRoot Lib "gm6s32.dil" (ByVal hgmnv
VB
As Long) As Long

Returns TRUE (not zero) if the specified hgmnv is the root.

PARAMETERS
hgmnv is the pointer to a Name/Value container.

EXAMPLE
If(GMW_NV_is Root (hgmnv)) {it’s the root} else {it's a child}

110



Integrating With GoldMine

SYNTAX
C/C++ HGMNV _stdcall GMW_NV_GetRoot(HGMNV hgmnv)
Public Declare Function GMW_NV_GetRoot Lib "gm6s32.dll" (ByVal hgmnv
VB
As Long) As Long

Returns the hgmnv of the root for the specified container. If the root’s hgmnv is
specified, the same hgmnv will be returned.

PARAMETERS
hgmnv is the pointer to a Name/Value container.

EXAMPLE
hRoot NV = GW_NV_Get Root ( hgmv)

SYNTAX
C/C++ HGMNV _stdcall GMW_NV_GetParent(HGMNV hgmnv)
Public Declare Function GMW_NV_GetParent Lib "gm6s32.dIl" (ByVal
VB
hgmnv As Long) As Long

Returns the hgmnv of the parent for the specified container. The function returns
NULL if the specified hgmnv has no parent (is the root).

PARAMETERS
hgmnv is the pointer to a Name/Value container.

EXAMPLE
hPar ent NV = GWV_NV_Get Par ent ( hgmv)

Getting the Number of Values in a Multi-Value Pair

The GMW_NV_GetMultiValueCount function will return the number of values
included in a multi-value name/value pair.

GOLDMINE API VERSION: 5.50.10111

SYNTAX
ClC++ long __stdcall GMW_NV_GetMultiValueCount(HGMNV hgmnv, const char*
name)
VB Public Declare Function GMW_NV_GetMultiValueCount Lib "gm6s32.dll"
(ByVal hgmnv As Long, ByVal strName As String) As Long
PARAMETERS

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair for which you want to receive the count of
values.

111



Integrating With GoldMine

EXAMPLE

number Of Val ues = GWV NV_Get Mul ti Val ueCount (hgmv, “POP3_Account ”)

Retrieving Containers from an NV Pair

When a value contains one container, the GMW_NV_GetNVValue function is used
to retrieve the hgmnv for that child container.

GOLDMINE API VERSION: 5.50.10111

SYNTAX
C/C++ HGMNV _stdcall GMW_NV_GetNvValue(HGMNV hgmnv, const char* name)
VB Public Declare Function GMW_NV_GetNvValue Lib "gm6s32.dll" (ByVal
hgmnv As Long, ByVal strName As String) As Long
PARAMETERS

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair from which you want to receive the child

container.

EXAMPLE

hSubNV = GWV NV_GCet NvVal ue( hgmmv, “TheNVNane”)

When a value contains multiple containers, the GMW_NV_GetMultiNvValue
function is used to retrieve the hgmnv for the child containers.

SYNTAX
ClC+t HGMNV _stdcall GMW_NV_GetMultiNvValue(HGMNV hgmnv, const char*
name, long position);
Public Declare Function GMW_NV_GetMultiNvValue Lib "gm6s32.dil"
VB (ByVal hgmnv As Long, ByVal strName As String, ByVal position As Long)
As Long '1 based
PARAMETERS

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair from which you want to receive the child

container.

Position is the nth value you want to retrieve (1 based). If you wanted the tenth
container in the value, then position would be 10.

EXAMPLE

hSubNV = GWV.NV_& Mul ti NvVval ue( hgmmv, “TheNvNane”, 10)

112




Integrating With GoldMine

Retrieving the Values in a Multi-Value Pair

The GMW_NV_GetMultiValue function is used to retrieve the values from a multi-
value pair. It is called for each value and the number of the value to retrieve must be
specified. This function is used to retrieve string values. To retrieve NV containers
from the value, use the GMW_NV_GetNvValue function or the
GMW_NV_GetMultiNvValue function.

GOLDMINE API VERSION: 5.50.10111

SYNTAX

const char* _stdcall GMW_NV_GetMultiValue(HGMNV hgmnv, const char*

++
e name, long element, const char* defaultValue)

Public Declare Function GMW_NV_GetMultiValue Lib "gm6s32.dIl" (ByVal
VB hgmnv As Long, ByVal strName As String, element As Long, ByVal
strDefaultValue As String) As GMWStr

PARAMETERS
hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair for which you want to receive the values
from.

Element is the number of the value to be returned. This is 1 based.
DefaultValue is the default value to return if the element supplied is not found.
EXAMPLE

To return the fifth element:

strFi fthEletmmt = GWV.NV_Get Mul ti Val ue( hgmv,
“POP3_Account ”, 5, “No Account ")

Deleting Values from a Multi-Value Pair
The GMW_NV_EraseName function will delete the entire Multi-Value Pair.

GOLDMINE API VERSION: 5.50.10111

Assigning a Container to a Parent

If you need to populate a container that will be a child container, one approach is to
create the container, fill int with its respective values, and then copy the container
into the value of the NV pair desired.

When the NV pair holds only one container, the GMW_NV_SetNvValue function is
used.

113



Integrating With GoldMine

GOLDMINE API VERSION: 5.50.10111

SYNTAX
ClCHt void _stdcall GMW_NV_SetNvValue(HGMNV hgmnv, const char* name,
HGMNV hgmnvValue)
VB Public Declare Sub GMW_NV_SetNvValue Lib "gm6s32.dill" (ByVal hgmnv
As Long, ByVal strName As String, ByVal hgmnvValue As Long)
PARAMETERS

hgmnv is the pointer to the parent Name/Value container.

Name is the name of the name/value pair into which you want to copy the child
container.

hgmnvValue is the prepared NV container to copy to the parent container.

EXAMPLE
GWV NV_Set NvVal ue hgmmv, “TheNVNane”, hChil dNV

The GMW_NV_AppendNvValue function will append a copy of the specified child
container to an NV pair value that contains multiple containers.

SYNTAX

long _stdcall GMW_NV_AppendNvValue(HGMNV hgmnv, const char*

e name, HGMNV hgmnvValue)

Public Declare Function GMW_NV_AppendNvValue Lib "gm6s32.dll"
VB (ByVal hgmnv As Long, ByVal strName As String, ByVal hgmnvValue As
Long) As Long

PARAMETERS
hgmnv is the pointer to the Name/Value container.

Name is the name of the name/value pair into which you want to copy the child
container.

hgmnvValue is the prepared NV container to copy to the parent container.

EXAMPLE
GWV NV_AppendNvVal ue hgmv, “The NVNane”, hChil dNV

Creating an Empty Child Container Within the Parent

The two preceding functions took a prepared NV container and copied it to the
parent container. Another (best practice) method would be to allow the API to create
the child container for you, return the hgmnv to that child, and then allow you to fill
it with the appropriate values.

The GMW_NV_SetEmptyNvValue will create a child container for an NV pair and
return the hgmnv for that child. This function is used when the value is to hold only
one child container.

114



Integrating With GoldMine

GOLDMINE API VERSION: 5.50.10111

SYNTAX
ClC++ HGMNV _stdcall GMW_NV_SetEmptyNvValue(HGMNV hgmnv, const char*
name)
VB Public Declare Function GMW_NV_SetEmptyNvValue Lib "gm6s32.dll"
(ByVal hgmnv As Long, ByVal strName As String) As Long
PARAMETERS

hgmnv is the pointer to the parent Name/Value container.

Name is the name of the name/value pair in which you want to create the child

container.

EXAMPLE
hChi | dNv = GWV NVSet Enpt yNvVal ue( hgmmv, “TheNVNane”)

‘now set the values of the child container using the returned HGWV

When you need to append an empty child container to an NV pair containing
multiple children, use the GMW_NV_AppencdEmptyNvValue function.

SYNTAX
C/C++ HGMNV _stdcall GMW_NV_AppendEmptyNvValue(HGMNV hgmnv, const
char* name)
VB Public Declare Function GMW_NV_AppendEmptyNvValue Lib "gm6s32.dll"
(ByVal hgmnv As Long, ByVal strName As String) As Long
PARAMETERS

hgmnv is the pointer to the parent Name/Value container.

Name is the name of the name/value pair to which you want to append the new

empty child container.

EXAMPLE
hChi | dNv = GWV NV_AppendEnpt yNvVal ue( hgmv, “TheNVNane”)

‘now set the values of the child container using the returned HGWNV.

Appending String Values to a Multi-Value Pair

The GMW_NV_AppendValue function will append values to a multi-value pair.

GOLDMINE API VERSION: 5.50.10111

SYNTAX
long _stdcall GMW_NV_AppendValue(HGMNV hgmnv, const char* name,
CIC++
const char* value)
Public Declare Function GMW_NV_AppendValue Lib "gm6s32.dll" (ByVal
VB hgmnv As Long, ByVal strName As String, ByVal strValue As String) As
Long

115




Integrating With GoldMine

PARAMETERS
hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair for which you want to receive the count of
values.

Value is the value to be appended to the end of the list of values.

EXAMPLE
To set five (5) values for the POP3_Account value:
For i =1 To 5
GWV NV_Append hgmv, “POP3_Account ”, i
Next i

Low-level Data Access & Manipulation

The following sections describe additional functions in the GMXS32.DLL that allow
data reading and updating via low-level methods. Use of the following functions
requires in-depth knowledge of the GoldMine data structures and business rules.
They are useful for accessing and writing data that is not accessible via the high-level
business logic functions.

Reading Security and Rights for a DLL User

The GMW _UserAccess function retrieves specific permission information for the
logged-in user.

GOLDMINE API VERSION: 5.00.041

SYNTAX
C/C++ int _stdcall GMW_UserAccess(long iOption )
VB Public Declare Function GMW_UserAccess lib “gm6s32.dlI” (ByVal iOption
as long) as Integer
PARAMETERS

GMW _UserAccess takes one parameter, iOption, which is a value for the types of
rights settings you wish to query.

iOption values

Value Rights

100 Master Rights

101 Access to other user’s calendar
102 Access to other user’s history

103 Access to other user’s sales

104 Access to other user’s reports

105 Access to other user’s merge forms

116



Integrating With GoldMine

Value Rights

106 Access to other user’s filters
107 Access to other user’s groups
108 Access to other user’s links
111 Right to create a record

112 Right to edit a record

113 Right to delete a record

114 Right to change record owner
115 Right to field views

116 Right to schedule automated processes
118 Right to SQL Query

119 Right to NetUpdate

124 Right to build groups

RETURN VALUES

The GMW _UserAccess function returns 1 if the user has the queried rights.

Using GMW_CalAccess, you can query whether the user logged in via the DLL has
rights to read/write a CAL record.

SYNTAX
int _stdcall GMW_CalAccess(char *szRecType, char *szUserID, char
C/C++ *szNumber1l)
VB Public Declare Function GMW_CalAccess lib “gm6s32.d1I” (ByVal sRectype
as String, ByVal sUserID as String, ByVal sNumberl as String) as Integer
PARAMETERS

szRecType is the RecType of the record.

szUserID is the UserID of the record.

szNumberl is the Numberl value of the record.

RETURN VALUES
The GMW_CalAccess function returns 1 if the user has rights to read/write.

Using GMW_HistAccess, you can query if the user logged in via the DLL has rights
to read/write a CONTHIST record.

SYNTAX
C/C++ int _stdcall GMW_HistAccess(char *szRecType, char *szUserID)
VB Public Declare Function GMW_HistAccess Lib "gm5s32.dIl" (ByVal

szRecType As String, ByVal szUserID As String) As Integer

117




Integrating With GoldMine

PARAMETERS
szRecType is the RecType of the record.

szUserlD is the UserID of the record.

RETURN VALUES
The GMW_HistAccess function returns 1 if the user has rights to read/write.

Returning GoldMine Licensing Information

GOLDMINE API VERSION: 5.00.041

SYNTAX
C/C++ int_stdcall GMW_GetLicenselnfo( GMW_Liclnfo *pLic)
VB Public Declare Function GMW_GetLicenselnfo Lib "gm6s32.dIl" (Liclnfo As
GMW_LicInfo) As Long
PARAMETERS

GMW_GetLicenselnfo takes one parameter pLic, which is a pointer to a client
allocated GMW_LicInfo structure.

RETURN VALUES
The GMW_GetLicenselnfo function returns the following values:

GMW_GetLicenselnfo Return Values

Return Description

0 Failure

1 Success
NOTES

The GMW_LicInfo structure includes the following items:

GMW_GetLicenselnfo Structure

Type/Size Name Description

char /60 Licensee Licensee name

char /40 LicNo Master serial number

char/20 SiteName Undocked site name

long integer LicUsers; Licensed users

long integer SQLUsers; Licensed SQL users

long integer GSSites; License GoldSync sites

long integer isDemo; Is demo install? 1=True

long integer isServerLic; Is primary (D' or 'E’) license? 1=True
long integer isRemoteLic; Is remote (‘U or ‘S’) license? 1=True
long integer isUSALicense; Is USA license? 1=True

118




Integrating With GoldMine

Type/Size Name Description
long integer DLLVersion DLL Version number
long integer Reservedl Reserved
long integer Reserved2 Reserved
char /100 sReserved Reserved
EXAMPLE

GWV Li cl nfo olLic;
GWV Get Li censel nfo( &oli c;

Returning Calendar Data

The ReadSchedule call returns all calendar data for a given RecID. You can also
make the ReadSchedule call through the XML API.

SYNTAX

pnv = (GMWnv*)GMW_NV_CreateCls();
C/C++ pnv->Set("RecID", "SOMEVALIDRECID");
GMW_NV_Execute("ReadSchedule”, pnv);

Retrieving Data with DataStream

DataStream returns the data of ordered records from any GoldMine table using the
most efficient method available. The caller can specify:

e Fields and expressions to return

e Range of records to return

e Optional filter to apply to the data set
DataStream SQL query capabilities are very fast on SQL databases.

The DataStream method allows for many useful applications. One such group of
applications would merge HTML templates with the data returned by GoldMine
DataStream to publish the contents of GoldMine data on the Internet. Web pages can
be created to display GoldMine data requested by a visitor. Based on visitor
selections, a company could dynamically present a variety of HTML pages,
including dealer addresses in a particular city, financial numbers stored in Contact2,
and even seating availability at upcoming conferences. With a fast Internet
connection and a strong SQL server, the GoldMine client could respond
simultaneously to dozens of requests.

Advantages of Using DataStream

GoldMine DataStream is absolutely the fastest way to read data from GoldMine
tables. Used correctly, DataStream will return the data faster than most development
environments would directly. DataStream offers the following advantages:

119



Integrating With GoldMine

e Efficiency: DataStream issues a single, most efficient SQL
query or Xbase seek to retrieve records from the back-end
database to the local client. On SQL databases, requests of a
few hundred records could be sent from the server to the
client with a single network transaction, greatly minimizing
network traffic.

e Speed: All fields and expressions are parsed initially by
GMW_DS_Range() and GMW_DS_Query(), and then quickly
evaluated against each record in GMW_DS_Fetch. Other DDE
methods (and development environments) require that each
field be parsed and evaluated each time its data is read. This
makes a big difference when reading hundreds or thousands
of records.

e Simplicity: Only three function calls are required to read all the
data. Using traditional record-by-record querying would
require one call for each field of each record (reading 10 fields
from 50 records would require 500 function calls).

¢ Results: All the work to gather and format the data is done in
C++, which is the fastest way to fly. The caller needs only to
parse the resulting packet string.

DataStream Record Selection

The following DataStream functions are listed in the order in which they must be
called.

GMW_DS_Range(): Opens a ranged cursor
GMW_DS_Query(): Opens an SQL query cursor
GMW_DS_Fetch(): Fetches records
GMW_DS_Close(): Closes cursor

Either the GMW_DS_Range() function or the GMW_DS_Query() function must be
called first to request the data. These functions return the integer handle, iHandle,
which must be passed to the GMW_DS_Fetch() and GMW_DS_Close() functions.

You must use either GMW_DS_Range() or GMW_DS_Query() —you cannot use
both. The GMW_DS_Range and GMW_DS_Query functions execute equally fast on
SQL and FireBird databases. GMW_DS_Range executes much faster on Xbase tables
than does GMW_DS_Query.

GMW_DS_Range

SYNTAX

long GMW_DS_Range( char *szTable, char *szTag, char *szTopLimit, char

S *szBotLimit, char *szFields, char *szFilter, char *szFDIm, char *szRDIm );

120



Integrating With GoldMine

Public Declare Function GMW_DS Range Lib "gm6s32.dIl" (ByVal strTable
As String, ByVal strTag As String, ByVal strTopLimit As String, ByVal
strBotLimit As String, ByVal strFields As String, ByVal strFilter As String,
ByVal strFDIm As String, ByVal strRDIm As String) As Long

VB

GMW_DS_Range returns a range of records based on an index.
PARAMETERS

The following parameters are required:

szTable specifies the table name (such as “Contact1”) or the table ID.
szTag designates the tag that corresponds to the index file.

szTopLimit specifies the top limit of the range. (Must conform to the index
expression.)

szBotLimit specifies the bottom limit of the range. (Must conform to the index
expression.)

szFields specifies the requested fields and expression to return—see
“GMW_DS_Range Field Selection” on the following page.

The following parameters are optional:

szFilter designates an optional Xbase filter expression.
szFDIm specifies the field delimiter (default: carriage return).
szRDIm specifies the record delimiter (default: line feed).

RETURN VALUES
The GMW_DS_Range function returns the following values:

GMW_DS_Range Return Values

Return Description
0 Failure
1-20 Success (handle)

GMW_DS_RANGE FIELD SELECTION

The szFields parameter passed to GMW_DS_Range should consist of the field names
and Xbase expressions to evaluate against each record in the data set. Each field
must be terminated with a semicolon (). Xbase expressions must be prefixed with an
ampersand (&), and terminated with a semicolon. For example, the following
commands request the first 100 cities from the Lookup file, including the city name
and record number (RecID under SQL):

ihl = GW DS _Range( "l ookup", "lookup", "CITY', "CITYZ", "Entry;
&RecNo(); ")
rl GWV DS Fetch( ihl, szBuf, iBufSize, 100 )

r2 GWV DS Cose( ihl)

121



Integrating With GoldMine

The following commands request the first 10 profiles of the current contact record,
followed by a request for the next 50 profiles:

ihl = GW/DS_Range( "contsupp", "contspfd", sAccNo+"P", sAccNo+"P",
" Cont act ; Cont SupRef; ")

rl = GWVDS Fetch( ihl, szBuf, iBufSize, 10 )
rl = GWVDS Fetch( ihl, szBuf, iBufSize, 50 )
rl = GWVDS Cose( ihl)

GMW_DS_Query

SYNTAX

long GMW_DS_Query( char *szSQL, char *szFilter, char *szFDIm, char

Eie *szRDIm );

Public Declare Function GMW_DS Query Lib "gm6s32.dll" (ByVal strSQL
VB As String, Optional ByVal strFilter As String, Optional ByVal strFDIm As
String, Optional ByVal strRDIm As String) As Long

This function is very fast on SQL databases.

PARAMETERS
szSQL query sends the query for evaluation on the server. The SQL query can join
multiple tables and return any number of fields.

Optional parameter szFilter specifies a Boolean Xbase filter expression to apply to
the data set (even on SQL tables), similar to the DDE SETFILTER command.

Optional parameter szFDIm overrides the return packet’s default field delimiter of
CR (carriage return).

Optional parameter szRDIm overrides the return packet’s default record delimiter of
LF (line feed).

RETURN VALUES
The GMW_DS_Query function returns the following values:

GMW_DS_QueryReturn Values

Return Description

0 Failure

-1 Invalid Query/Timeout
1-20 Success (handle)

GMW_DS_Fetch

SYNTAX
C/C++ long GMW_DS_Fetch( long iHandle, char *szBuf, int iBufSize,
int nGetRecs );
VB Public Declare Function GMW_DS_Fetch Lib "gm6s32.dil" (ByVal iHandle

As Long, ByVal strbuf As String, ByVal iBufSize As Long, ByVal nGetRecs
As Long) As Long

122



Integrating With GoldMine

GMW_DS_Fetch returns a single packet string containing the requested data from all
records processed by the current “fetch” command, as specified by the nGetRecs
parameter. iHandle must be the value returned from GMW_DS_Range() or
GMW_DS_Query().For details about the packet format, see “"GMW_DS_Fetch Return
Packet” below.

GMW_DS_FETCH RETURN PACKET

GMW_DS_Fetch returns a single packet string containing the data from all requested
records. The packet includes a header record, followed by one record for each record
evaluated by “fetch.” Within each record in the packet, the fields are separated by a
field delimiter specified in GMW_DS_Range or GMW_DS_Query. By default, the field
delimiter is the carriage return character (13 or 0x0D).

The records in the packet are separated by the record delimiter. By default, the
record delimiter is the line feed character by default (10 or 0x0A).

These delimiters are convenient when the requested data does not contain notes
from blob fields. You can pass 0 for szFDIm, szRDIm to use the default delimiters.
When requesting notes, override the default delimiters by passing other delimiter
values to GMW_DS_Range() and GMW_DS_Query() . For packets with notes, good
delimiters are the ASCII characters 1 and 2.

The City Lookup example from above might return a packet of data similar to:

3000- 0004
Bost on| 23
London| 393

Los Angel es| 633
New Yor k| 29

The packet header record consists of two sections:
First byte can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another
GMW_DS_Fetch call

3 indicates the end-of-file (EOF)
4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in
the packet.

DataStream takes about as much time to read three records as to read 30. For best
performance, adjust the number of records requested by GMW_DS_Fetch to return
8K-32K packets.

The calling application must allocate the memory for a large enough packet buffer,
and pass that memory buffer to GMW_DS_Fetch. When the number of records
cannot be estimated to allocate a packet buffer, GMW_DS_Fetch can be called twice,
once to fetch the data and return a buffer size, and a second time to retrieve the data
into the buffer. When GMW_DS_Fetch is first called to get the buffer size, the szBuf
and iBufSize parameters must both be 0. The nGetRecs parameter must indicate the

123



Integrating With GoldMine

number of records to fetch. When GMW _DS _Fetch is then called to retrieve the data
that has been fetched by the first call, the nGetRecs parameter must be 0.

Note: If the return DataStream is too large for the specified buffer size,
GMW_DS_Fetch returns a value of -5. When the buffer in increased to an adequate
size, GMW_DS_Fetch will return the data in a DataStream. This behavior prevents
the dropping of data due to undersized buffers.

124



Integrating With GoldMine

GMW_DS Close

SYNTAX
CIC++ long GMW_DS_Close( long iHandle)
VB Public Declare Function GMW_DS Close Lib "gm6s32.dll" (ByVal iHandle As
Long) As Long

GMW_DS_Close must be called when the operation is complete. Unclosed data
streams will leak memory and leave the database connections needlessly open.
Passing an iHandle of 0 closes all open DataStream objects.

Accessing Low-Level Data Using Work Areas

The GoldMine GMXS32.DLL provides a complete set of functions that allow
low-level access to the database tables. Using these functions, you can:

e Open particular data files

e Seek the values of the fields in the records in the data files
e Append records to the tables

e Delete records

e Replace data in the records

Database applications that need varied access to GoldMine data typically use this
suite of functions. To work successfully, these functions rely on a work area
parameter. Using this parameter, you can open multiple data files concurrently and
manipulate each file independently by referencing the file by work area. These functions
also maintain synchronization information, which is stored in the TLogs.

GMXS32.DLL offers the low-level access functions that are listed in the following
table.

GMXS32.DLL Low-Level Access Functions

Function Name Description

Opening and Closing Databases

GMW_DB_Open Opens one GoldMine data file for processing by another application

GMW_DB_Close Releases a previously OPENed file when processing is complete

GMW_DB IsSQL In GM 7.0, Determines whether the table is MSSQL (1) or Other (0). Use the
getDBENgineType function to retrieve additional DB engine information.

Creating and Deleting Records

GMW_DB_Append | Adds a new, empty record to a GoldMine data file

GMW_DB_Delete Deletes the current record in the specified work area.

Reading and Writing Data

GMW_DB_Read Queries a data file for the value of a field

125



Integrating With GoldMine

Function Name

Description

GMW_DB_RecNo

Determines either current record number position (Xbase), or the
record ID (SQL)

GMW_DB_Replace

Changes the value in a particular field in one GoldMine data file

GMW_DB_Unlock

Unlocks a record previously locked by a call to either GMW_DB_Append or
GMW_DB_Replace

Limiting Scope of Data

GMW_DB_Filter

Limits access to data in a GoldMine database by creating a subset of records
based on expression criteria

GMW_DB_Range

Activates the index in a table, and sets a range of values to limit the scope of
data that GoldMine will search

Searching for Data

GMW_DB_Search

Performs a sequential search on a file

GMW_DB_Seek

Positions to the first record matching the seek value

GMW_DB_SetOrder

Sets the current index tag on the table

Navigating the

Database

GMW_DB_Move Positions the record pointer to a particular record in a data file
GMW_DB_Goto Positions to a specific record in the table

GMW_DB Top Positions to the first record in the table

GMW_DB_Skip Positions to the next or prior record in the table

GMW_DB_Bottom

Positions to the last record in the table

GMXS32.DLL Low-Level Access Functions

Function Name

Description

GMW_DB_QuickSeek

Wraps several DLL functions to perform a Seek based on an index

GMW_DB_QuickRead

Wraps several DLL function to perform a Read

GMW_DB_QuickReplace Wraps several DLL functions to perform a Replace

Detailed descriptions of each database access function appear on the following
pages. Some of the following functions refer to table names, field names, and index
tags. For details, see “Xbase Database Structures” on page 383 or SQL Database
Structures” on page 399.

Opening a Data File

GMW_DB_Open opens one GoldMine data file for processing by another

application.
SYNTAX
C/C++ long GMW_DB_Open(char *szTablename);
VB Public Declare Function GMW_DB_Open Lib "gm6s32.dll" (ByVal
strTableName As String) As Long

126




Integrating With GoldMine

PARAMETER

The GMW_DB_Open function takes only szTableName, which is the name of the
table to be opened.

RETURN VALUES
The GMW_DB_Open function returns the following values:

GMW_DB_Open Return Values

Return Description
0 Error occurred
>0 Work area handle for table

Closing a Data File

GMW_DB_Close releases a previously OPENed file when processing is complete.
All previously opened files must be properly closed —failure to do so can result in
database errors.

SYNTAX
C/C++ long GMW_DB_Close( long pArea);
VB Public Declare Function GMW_DB_Close Lib "gm6s32.dll" (ByVal IArea As
Long) As Long
PARAMETERS

The GMW_DB_Close function takes only pArea, which is the work area handle of
the file opened by the GMW_DB_Open function.

RETURN VALUES
The GMW_DB_Close function returns the following values:

GMW_DB_Close Return Values

Return Description
0 Error occurred
1 Table properly closed

Checking for an SQL Table

GMW_DB_IsSQL is used to determine if the table is MSSQL (1) or Other (0). Use the
getDBENngineType function to retrieve more detailed DB engine information.

SYNTAX
C/C++ long GMW_DB_IsSql(long pArea);
VB Public Declare Function GMW_DB_IsSQL Lib "gm6s32.dll" (ByVal |Area As
Long) As Long

127



Integrating With GoldMine

PARAMETER
The GMW_DB_IsSQL function takes only pArea, which is the work area handle of
the file opened by the GMW_DB_Open function.

RETURN VALUES
The GMW_DB_IsSQL function returns the following values in GoldMine 7.0:

GMW_DB_IsSQL Return Values

Return Description
0 Table is not MSSQL
1 Table is MSSQL

128



Integrating With GoldMine

Adding a Record
GMW_DB_Append adds an empty record to a GoldMine data file.

SYNTAX
C/C++ long GMW_DB_Append(long pArea, char* szRecID);
VB Public Declare Function GMW_DB_Append Lib "gm6s32.dll" (ByVal |Area
As Long, ByVal strRecID As String) As Long

Before using GMW_DB_Append, you must open a data file using the
GMW_DB_Open function. After executing the GMW_DB_Append function, the
record pointer is positioned at the new empty record, and the record is locked and
ready to accept field replacements.

When a CONTACT1 record is appended, GoldMine automatically fills in the new
record with the appropriate ACCOUNTNO and CREATEBY values. For all other
records, you must replace the ACCOUNTNO field with the value from the
CONTACT1 record with which the new record is to be linked. For records that
require remote synchronization initialization, GoldMine will automatically fill in the
value of the RECID field when these records are appended.

PARAMETERS
pArea is the work area handle of the file opened by the GMW_DB_Open function.

szRecID specifies the size of the character buffer to accept the return value. The
szRecID buffer must be at least 20 characters.

RETURN VALUE

Xbase: APPEND function returns the record number of the new record, or 0 if the
file could not be locked.

SQL and FireBird: APPEND function returns the RECID of the new record in the
szRecID parameter.
Deleting the Current Record

GMW_DB_Delete deletes the current record in the specified work area and moves
the record pointer to the next record.

For records that require remote synchronization initialization, GoldMine will
automatically maintain the TLog entry.

SYNTAX
C/C++ long GMW_DB_Delete( long pArea);
VB Public Declare Function GMW_DB_Delete Lib "gm6s32.dIl" (ByVal |Area As
Long) As Long
PARAMETER

The GMW_DB_Delete function takes only pArea, which is the work area handle of
the file opened by the GMW_DB_Open function.

129



Integrating With GoldMine

RETURN VALUES
The GMW_DB_Delete function returns the following values:

GMW_DB_Delete Return Values

Return Description
0 Error occurred
1 Record deleted

Querying for a Field Value
GMW_DB_Read queries a data file for the value of a field.

SYNTAX
C/C++ long GMW_DB_Read(long pArea, char *szField, char *szBuf, int iBufSize);
Public Declare Function GMW_DB_Read Lib "gm6s32.dll"* (ByVal |Area As
VB Long, ByVal strField As String, ByVal strbuf As String, ByVal IBufSize As
Long) As Long
PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szField is the name of the field to read within the table.

szBuf is the buffer in which the function will return the results.

iBufSize specifies the size of the buffer.
GMW_DB_Range Return Values

Return Description
0 Error occurred
1 Success

Checking the Current Record Number or Record ID

GMW_DB_RecNo is used to determine either current record number position
(Xbase) or the record ID (SQL and FireBird).

SYNTAX
C/C++ long GMW_DB_RecNo(long pArea, char *szRecID);
VB Public Declare Function GMW_DB_RecNo Lib "gm6s32.dIl" (ByVal |Area As
Long, ByVal strRecID As String) As Long
PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

SzReclD is a character string that accepts the return value of RecNo (Xbase) or RecID

(SQL).

130




Integrating With GoldMine

RETURN VALUE
Xbase: Returns the current record number

SQL: Returns the current RecID
CHANGING A FIELD VALUE
GMW_DB_Replace changes the value in a particular field in one GoldMine data file.

For records that require remote synchronization initialization, GoldMine will
automatically maintain the TLog entry.

SYNTAX

long GMW_DB_Replace(long pArea, char *szField, char *szData, int

e iAddTo):

Public Declare Function GMW_DB_Replace Lib "gm6s32.dll" (ByVal |Area
VB As Long, ByVal strField As String, ByVal strData As String, ByVal iAddTo
As Long) As Long

PARAMETERS
pArea is the work area handle of the file opened by the GMW_DB_Open function.

szField specifies the name of the field to be replaced.

szData specifies the data to be placed in the field.

iAddTo indicates if the data is to be appended to the existing data. A value of 1 will
append the data. A value of 0 will overwrite the data.

RETURN VALUES

The GMW_DB_Replace function returns the following values:

GMW_DB_Replace Return Values

Return Description
0 Error occurred
1 Field was successfully replaced

Unlocking a Record

GMW_DB_Unlock unlocks a record previously locked by a call to either
GMW_DB_Append or GMW_DB_Replace.

SYNTAX
C/C++ long GMW_DB_Unlock(long pArea);
Public Declare Function GMW_DB_Unlock Lib "gm6s32.dIl" (ByVal |Area
VB
As Long) As Long
PARAMETER

The GMW_DB_Unlock function takes only pArea, which is the work area handle of
the file opened by the GMW_DB_Open function.

131



Integrating With GoldMine

RETURN VALUES
The GMW_DB_Unlock function returns the following values:

GMW_DB_Unlock Return Values

Return Description
0 Error occurred
1 Success

Creating a Subset of Records

GMW_DB_Filter limits access to data in a GoldMine database by creating a subset of
records based on expression criteria. If successfully called, all other functions (Top,
Bottom, Skip, and so on) will respect the filter.

SYNTAX
C/C++ long GMW_DB_Filter(long pArea, char *szFilterExpr);
VB Public Declare Function GMW_DB_Filter Lib "gm6s32.dll" (ByVal |Area As
Long, ByVal strFilterExpr As String) As Long
PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szFilterExpr is the valid Xbase expression. To remove the filter, send an empty string
as the second parameter.

RETURN VALUES
The GMW_DB_Filter function returns the following values:

GMW_DB_Filter Return Values

Return Description
0 Error occurred
1 Success

Limiting Search Scope

GMW_DB_Range activates the index in a table and sets a range of values to
limit the scope of data that GoldMine will search. This function is faster than
GMW_DB_Filter.

The Min and Max values must be formatted the same as the selected index tag’s

expression.

If successfully called, all other functions (Top, Bottom, Skip, etc.) will respect the

range.

132




Integrating With GoldMine

SYNTAX

C/C++ long GMW_DB_Range(long pArea, char *szMin, char *szMax, char *szTag);

Public Declare Function GMW_DB_Range Lib "gm6s32.dll" (ByVal |Area As
VB Long, ByVal strMin As String, ByVal strMax As String, ByVal strTag As
String) As Long

PARAMETERS
pArea is the work area handle of the file opened by the GMW_DB_Open function.

szMin specifies the minimum or lower value of the range.
szMax specifies maximum or upper value of the range.
szTag is the index tag name.

RETURN VALUES
The GMW_DB_Range function returns the following values:

GMW_DB_Range Return Values

Return Description
0 Error occurred
1 Success

Performing a Sequential Search

GMW_DB_Search performs a sequential search on a file.

SYNTAX
C/C++ long GMW_DB_Search(long pArea, char *szExpr, char *szRecID);
VB Public Declare Function GMW_DB_Search Lib "gm6s32.dll" (ByVal IArea
As Long, ByVal strExpr As String, ByVal strRecID As String) As Long
PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szExpr is the valid Xbase expression. For a record to be “found” this expression must
result as TRUE.

szReclD is the buffer where the return value is stored. The return value will be a
record number under Xbase or a RecID under SQL. You may pass NULL as the third
parameter if you do not want the RecNo/RecID.

RETURN VALUES
The GMW_DB_Search function returns the following values:

133



Integrating With GoldMine

GMW_DB_Search Return Values

Return Description
0 No match found
>0 Xbase: RecNo of the matching record; SQL: ReclD of the matching record

Moving to the First Record Match
GMW_DB_Seek positions to the first record matching the seek value.

SYNTAX
C/C++ long GMW_DB_Seek(long pArea, char * szParam);
VB Public Declare Function GMW_DB_Seek Lib "gm6s32.dll" (ByVal IArea As
Long, ByVal strParam As String) As Long
PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.
szParam is the value you will seek. This value must match the format of the index
expression for the currently active index.

\RETURN VALUES

The GMW_DB_Seek function returns the following values:

GMW_DB_See Return Values

Return Description

0 Error occurred

1 Exact match found. Cursor moved to record.

2 Exact match not found. Cursor placed at closest matching record.

Setting the Current Index Tag
GMW_DB_SetOrder sets the current index tag on the table.

SYNTAX
C/C++ long GMW_DB_SetOrder(long pArea, char *szTag);
VB Public Declare Function GMW_DB_SetOrder Lib "gm6s32.dIl" (ByVal |Area As
Long, ByVal strTag As String) As Long
PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.
For a list of index names, see “Database Structures” on page 383.

szTag is the name of the index tag to activate on the table.

RETURN VALUES
The GMW_DB_SetOrder function returns the following values:

134



Integrating With GoldMine

GMW_DB_SetOrder Return Values

Return Description
0 Error occurred
1 Index successfully activated

Positioning the Record Pointer

GMW_DB_Move positions the record pointer to a particular record in a data file.

SYNTAX
C/C++ long GMW_DB_Move(long pArea, char *szCommand, char *szParam);
VB Public Declare Function GMW_DB_Move Lib "gm6s32.dIl" (ByVal |Area As
Long, ByVal strCommand As String, ByVal strParam As String) As Long
PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szCommand

is the command to execute. Each of these commands has an

independent function equivalent that is the preferred method to use. This function

remains as a

legacy to its DDE counterpart.

szParam is the scope or value for the command.

GMW_DB_Move Commands and Function Equivalents

Command Parameter Function Equivalents
TOP Not required GMW_DB Top
BOTTOM Not required GMW_DB_Bottom
SKIP Number of records to skip GMW_DB_Skip

GOTO Record Number/RecID GMW_DB_Goto

SEEK Search key value GMW_DB_Seek
SETORDER Index Tag GMW_DB_SetOrder

RETURN VALUES

The GMW_DB_Move function returns the following values:
GMW_DB_Move Return Values

Return Description

0 Error occurred

1 Exact match found. Cursor moved to record or index-activated.

2 Exact match not found. Cursor placed at closes matching record.
3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

135




Integrating With GoldMine

Moving to a Specified Record

GMW_DB_Goto positions to a specific record in the table.

SYNTAX
C/C++ long GMW_DB_Goto(long pArea, char *szRecNo);
VB Public Declare Function GMW_DB_Goto Lib "gm6s32.dll" (ByVal IArea As
Long, ByVal strRecNo As String) As Long
PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.
szRecNo specifies where the cursor should be placed, and is either the Record
number for Xbase or the RecID for SQL

RETURN VALUES
The GMW_DB_Goto function returns the following values:

GMW_DB_Goto Return Values

Return Description

0 Error occurred

Exact match found. Cursor moved to record or Index activated.

Exact match NOT found. Cursor placed at closest matching record.

1

2

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to the First Record

GMW_DB_Top positions to the first record in the table.

SYNTAX
C/C++ long GMW_DB_Top( long pArea);
VB Public Declare Function GMW_DB_Top Lib "gm6s32.dll" (ByVal |IArea As
Long) As Long
PARAMETER

The GMW_DB_Top function takes only pArea, which is the work area handle of the
file opened by the GMW_DB_Open function.

RETURN VALUES
The GMW_DB_Top function returns the following values:

136



Integrating With GoldMine

GMW_DB_TopReturn Values

Return Description
0 Error occurred
1 Cursor moved to top of file

Moving to the Previous or Following Record
GMW_DB_Skip positions to the previous or following record in the table.

SYNTAX
C/C++ long GMW_DB_Skip(long pArea, int nSkip);
VB Public Declare Function GMW_DB_Skip Lib "gm6s32.dIl" (ByVal |Area As
Long, ByVal ISkip As Long) As Long
PARAMETERS

pArea is the work area handle of the file opened by the GMW_DB_Open function.
nSkip specifies the number records to skip. This value can be positive to move

forward in the table or negative to move backwards.

RETURN VALUES
The GMW_DB_Skip function returns the following values:

GMW_DB_Skip Return Values

Return Description

0 Error occurred

Cursor successfully moved

1
3 Cursor at end-of-file (EOF)
4 Cursor at beginning-of-file (BOF)

Moving to the Last Record
GMW_DB_Bottom positions to the last record in the table.

SYNTAX
C/C++ long GMW_DB_Bottom(long pArea);
Public Declare Function GMW_DB_Bottom Lib "gm6s32.dIl" (ByVal |Area
VB
As Long) As Long
PARAMETER

The GMW_DB_Bottom function takes only pArea, which is the work area handle of
the file opened by the GMW_DB_Open function.

RETURN VALUES
The GMW_DB_Bottom function returns the following values:

137



Integrating With GoldMine

GMW_DB_Bottom Return Values

Return Description
0 Error occurred
1 Cursor positioned on the last record in the table

Seeking a Record

GMW_DB_QuickSeek wraps several other database functions to provide a quick and
easy way to seek a record in the database.

SYNTAX

long GMW_DB_QuickSeek(char *szTableName, char *szIndex, char

CIC++ *szSeekValue, char *szRecID);

Public Declare Function GMW_DB_QuickSeek Lib "gm6s32.dIl" (ByVal
VB strTableName As String, ByVal strindex As String, ByVal strSeekValue As
String, ByVal strRecID As String) As Long

PARAMETERS
szTableName is the name of the table to be opened.

szindex is the index to use for the table.
szSeekValue is the seek expression to use.
szRecID is returned by the function. This is the RecID of the record found.

RETURN VALUES
The GMW_DB_QuickSeek function returns the following values:

GMW_DB_QuickSeek Return Values

Return Description
-2 Invalid Index
-1 Invalid table
0 Failure
Success

Reading a Field Value

GMW_DB_QuickRead wraps several other database functions to provide a quick
and easy way to read a field value from a record in the database.

SYNTAX

long GMW_DB_QuickRead(char *szTableName, char *szRecID, char

C/C++ *szField, char *szValue, int iLen);

GMW_DB_QuickRead Lib "gm6s32.dll" (ByVal strTableName As String,
VB ByVal strRecID As String, ByVal strField As StringByVal strValue As String,
ByVal iLen As Long) As Long

138



Integrating With GoldMine

PARAMETERS
szTableName is the name of the table to be opened.

szRecID is the RecID of the record from which to read.

szField is the Field name to return.

szValue is the value returned by the function.

iLen is the length of the returned data.

RETURN VALUES

The GMW_DB_QuickRead function returns the following values:
GMW_DB_QuickRead Return Values

Return Description
-4 Invalid Fieldname
-3 ReclD not found
-2 Invalid ReclD
-1 Invalid table
0 Failure

Success

Replacing a Field Value

GMW_DB_QuickReplace wraps several other database functions to provide a quick
and easy way to replace a field value from a record in the database.

SYNTAX

long GMW_DB_QuickReplace(char *szTableName, char *szRecID, char

CIC++ *szField, char *szValue, int iAddTo);

GMW_DB_QuickReplace Lib "gm6s32.dIl" (ByVal strTableName As String,
VB ByVal strRecID As String, ByVal strField As String, ByVal strValue As
String, ByVal iAddTo As Integer) As Long

PARAMETERS
szTableName is the name of the table to be opened.

szReclD is the RecID of the record to be updated.
szField is the Field name to replace.
szValue is the value to store in the field.

iAddTo indicates if the value data is to be appended (1) or replaced (O=default).

139



Integrating With GoldMine

RETURN VALUES
The GMW_DB_QuickReplace function returns the following values:

GMW_DB_QuickReplace Return Values

Return Description

-4 Invalid Fieldname
-3 ReclID not found
-2 Invalid RecID

-1 Invalid table

0 Failure

1 Success

Updating Sync Logs with GMXS32.DLL

The GoldMine GMXS32.DLL provides a method to update GoldMine
synchronization logs whenever an external application updates GoldMine data.

GMXS32.DLL offers the following synchronization functions:

GMW_UpdateSyncLog: Updates the sync log file

GMW_ReadIlmpTLog: Imports a prepared TLog import file

GMW_NewRecID: Gets a new RecID

GMW_SyncStamp: Converts sync stamp to time and converts time back to sync

stamp

Updating the Sync Log File

SYNTAX
int GMW_UpdateSyncLog(char *szTable, char *szRecID, char *szField, char
C/C++ . :
szAction)
GMW _UpdateSyncLog Lib "gm6s32.dIl" (ByVal strTable As String, ByVal
VB strReclD As String, ByVal strField As String, ByVal strAction As String) As
Long
PARAMETERS

szTable specifies the table name (such as “Contact1”) or the table ID.

szRecID specifies the RecID of the updated record: the correct RecID must be passed,
and the RecID value must be exactly 15 characters long.

szField specifies the name of the field that has changed. This parameter is only
relevant when the Action parameter is U. szField is ignored when Action is N or D.

szAction should be N when a new record has been appended, D when a record has
been deleted, or U when a field in a record has been updated.

140




Integrating With GoldMine

RETURN VALUES

The GMW_UpdateSyncLog function returns the following values:

GMW_UpdateSyncLog Return Values

Return Description

0 Error

1 New TLog entry created

2 New TLog entry updated

4 Field TLog entry created

8 Field TLog entry updated

16 Deleted record TLog entry created

32 New TLog Entry removed

EXAMPLE

char szTabl e[ 10] = "CONTACT1";
char szField[12] = "KEY2";
char szRecl D[ 20] = "\0";
char szAction = 'U;

GWV NewRecl D(szRecl D, "JON' ); GWV Updat eSyncLog( szTabl e, szRecl D,
szField, szAction );

Importing a Prepared TLog Import File

GMW_ReadImpTLog reads the status of a TLog import file, then deletes the import
file when the process is completed.

SYNTAX
C/C++ int GMW_ReadlmpTLog( char *szFile, int bDelWhenDone, char *szStatus )
Public Declare Function GMW_ReadImpTLog Lib "gm6s32.dIl" (ByVal
VB strFile As String, ByVal IDelWhenDone As Long, ByVal strStatus As String)
As Long
PARAMETERS

szFile specifies the import file name —see below for the import file structure.

IDeleteWhenDone specifies to delete the import file when the process has completed.

SzStatus buffer used to monitor the status of the process. Optional, can be NULL. If
passed, the szStatus buffer must be at least 10 characters long.

RETURN VALUES
The GMW_ReadImpTLog function returns the following values:

GMW_ReadlmpTLog Return Values

Return Description
0 Failure
>0 Success, total number of imported TLog records

141




Integrating With GoldMine

NOTES

GMW_LoadAPI or GMW_LoadBDE must be called before calling
GMW_ReadImpTLog for the first time. GMW_ReadImpTLog is executed in a thread,
so multiple calls can be made. Your application can determine when the imported
process completes by setting the iDeleteWhenDone parameter to 1, and noting when
the import file is deleted. The TLog import must have the structure shown in the

following table.
TLog Import Structure
Field Name Type Length
Table ID char 10
ReclD char 15
Field ID char 10
Action ID char 1
EXAMPLE
char szlnpFile[80] = "d:\\CGoldM ne\\tl ogi np. dbf";
char szStatus[20] = "\0";

int iDel eteWhenDone = 1;
int nTot Read = GWN Readl npTLog( szl npFi |l e, iDel eteWhenDone, szStatus );

Getting a New Record ID
GMW_NewRecID returns a new ReclD in the szRecIDBuf.

SYNTAX
C/C++ char* GMW_NewReclID( char *szRecIDBuf, char *szUser )
VB Public Declare Function GMW_NewRecID Lib "gm6s32.dll" (ByVal strRecID
As String, ByVal strUser As String) As GMWStr
PARAMETERS

szRecID specifies the application allocated buffer to contain the new RecID. The
buffer must be at least 16 characters long.

szUser specifies the GoldMine user name.

RETURN VALUE
pointer to szRecIDBuf

NOTES

GMW _NewRecID returns a new ReclD in the szRecIDBuf. GMW_NewRecID can be
called without first calling GMW_Load API or GMW_LoadBDE.

EXAMPLE
char szRecl D[ 20] = "\0";
char szUser[10] = "JON';
GWV NewRecl D( szRecl D, szUser );

142



Integrating With GoldMine

Converting the Sync Stamp
GMW_SyncStamp converts Sync Stamp to time format and back.

SYNTAX
C/C++ int GMW_SyncStamp( char *szStamp, char *szOutBuf)
VB Public Declare Function GMW_SyncStamp Lib "gm6s32.dll" (ByVal
strStamp As String, ByVal strOutBuf As String) As Long
PARAMETERS

When the szStamp string parameter is exactly 17 characters long, formatted as
Date:Time in form of CCYYMMDD:HH:MM:SS, the return string in szOutBuf is in
TLog timestamp format, exactly seven characters long. When the szStamp parameter
is seven characters long formatted as a TLog timestamp, the return string in
szOutBuf is formatted as CCYYMMDD:HH:MM:SS.

RETURN VALUES
The GMW_SyncStamp function returns the following values:

GMW_SyncStamp Return Values

Return Description

0 Failure

1 Success
NOTES

An empty return string indicates an error.

EXAMPLE
The following examples convert February 1, 1998, at 7:01pm to a TLog time stamp
format, then back to a date and time format:

Char szQut[20] = "\QO"

GWV SyncSt anp("19980201: 19: 01: 30", szQut); // returns "+#G<N2"
GWN SyncSt anp(" +#G><N2", szQut ); // returns "19980201:19:01: 30"

143



Integrating With GoldMine

144



Integrating With GoldMine

Working with the XML API

Beginning in GoldMine version 6.7, the GoldMine API can be accessed using XML
via the GMXMLAPILDLL. The programmer may pass XML generated
programmatically by concatenating strings or by using the Document Object Model
(DOM). XML provides a simple and flexible medium for passing and receiving data
from GoldMine’s APIL

A DOM Parser, such as MSXML or Xerces, should be utilized in constructing the
XML documents for the GoldMine XML API. All GoldMine data needs to be
XMLEncoded to avoid conflicts with XML entities (ie. < > &). A DOM Parser
would handle this, in addition to creating well-formed XML. Finally, some of the
XML documents returned will be too large to be handled by manually looping
through the XML; whereas a parser would make accessing the returned data much
more manageable.

The GMXMLAPILDLL is used independently of the GMXS32.DLL. The XML API
exposes all of the functionality present in the GMXS32, including the low-level data
access functions. However, the power of implementing an integration with XML

allows the use of the GoldMine API in any development environment that supports
COM, including VB, VB.NET, C++, C#, and JAVA.

This chapter will discuss how to login to GoldMine with the XML API, how to call
the business logic functions, and accessing the low level data functions. For specific
information on the names of the business logic functions and acceptable data
parameters and their return values, see Business Logic Functions and Name/Value Pairs
on page 268.

145



Integrating With GoldMine

Executing Your XML Document

Once the XML document has been created, pass it to the GoldMine XML API with
the ExecuteCommand method. This is the only method exposed in the XML API. It
accepts one parameter, xmlIn (the XML document prepared by the developer) and
returns the resulting XML document detailing result and/or error codes.

EXAMPLE

xm out = GVAPI . Execut eCommand( xm I n)

Creating Your XML Document
The root XML element for the GoldMine XML API is defined as the following:

<GVAPI cal | ="Functi onNanme" >
<dat a nane="Par anet er 1" >Par anet er Val ue</ dat a>
<dat a nane="Par anet er 2" >Par anet er Val ue 2</dat a>
</ GVAPI >

Loading the API (GoldMine 7.0 or higher)

The first function to execute is loading the API with the desired parameters. Calling
the Load API function will also login the specified user into the APL

The GoldMine XML API will always use a GoldMine seat for each user that
is logged into it. The total number of users logged into GoldMine will be all
workstation users and add-on applications combined.

To load the API and login the user, create the following XML:

<GWAPI cal |l ="LoadAPI ">
<dat a nane="User " >kevi n</ dat a>
<dat a nanme="Passwor d" >nmygnpass</ dat a>
<data nanme="SysDir">c:\program fil es\ gol dm ne\ </ data>_
<data nanme="Col dDi r">c:\ program fil es\ gol dni ne\ gnbase\ </ data> _
<dat a name="ConDir">c:\ program fil es\ gol dm ne\ common\ </ data> _
<dat a name="SQ.User">sa</dat a>_
<dat a name="SQ.Passwor d"></ dat a>
</ GVAPI >

PARAMETERS
The Load API function takes seven parameters.

146



Integrating With GoldMine

User: Specifies the GoldMine user name (case insensitive).

You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to use
login credentials returned for the user logged into a running copy of GoldMine
through DDE or COM.

Password: Specifies the user’s password (case insensitive).

You may set this to the return string from the GetLoginCredentials DDE or COM
command if the User parameter is set to “DDE_Login_Credentials*. The credential
string is only valid for 30 seconds.

SysDir: Specifies the location of the LICENSE.BIN file (Version 7.0 or later).
GoldDir: Specifies the location of the CAL table.

ComDir: Specifies the location of the CONTACT1 table.

SQLUser: The login name for the SQL Server, if applicable.

SQLPassword: The password for the SQL Server, if applicable.

The GMXS32.DLL required the call of GMW_SetSQLUserPass prior to
calling GMW_LoadBDE in order to set the SQL username and password.
This extra call is not used in the XML API.

The returned XML from Load API will indicate if the call succeeded, and if so, a
SessionID. This session ID is used to reference this particular user’s API session.
This is important in applications where multiple users are logged into the API
simultaneiously. Even if the integration will only have one user logged in at a time,
the Session ID must still be referenced in future calls to the XML API.

<GVAPI Sessionl D="1" cal | ="LoadAPI ">
<status code="1">AP| | oaded successfully</status>
</ GVAPI >

The status code will always give a description as to the cause of any generated
errors. The possible return codes are as follows.

LoadAPI Return Values

Return Description

1 API loaded successfully

0 API already loaded

-1 AP failed to load

-2 Cannot find license file

-3 Cannot load license file

-4 Cannot validate the license file username/password
-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

147



Integrating With GoldMine

Return Description
-8 General Failure
-9 No access to specified contact set for this user

Loading BDE (GoldMine 6.7)

The first function that needs to be executed is loading the Borland Database Engine.
Calling the function to load BDE will also login the specified user into the APL

The GoldMine XML API will always use a GoldMine seat for each user that
is logged into it. The total number of users logged into GoldMine will be all
workstation users and add-on applications combined.

To load the Borland Database Engine, create the following XML:

<GWAPI cal |l ="LoadBDE" >
<dat a nane="User " >kevi n</ dat a>
<dat a nanme="Passwor d" >nmygnpass</ dat a>
<data nanme="SysDir">c:\program fil es\ gol dm ne\ </ data>_
<data nanme="Col dDi r">c:\ program fil es\ gol dni ne\ gnbase\ </ data> _
<data nanme="ConDir">c:\program fil es\ gol dm ne\ common\ </ data> _
<dat a name="SQ.User">sa</dat a>_
<dat a name="SQ.Passwor d"></ dat a>
</ GVAPI >

148



Integrating With GoldMine

PARAMETERS
The LoadBDE function takes seven parameters.

User: Specifies the GoldMine user name (case insensitive).

You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to use
login credentials returned for the user logged into a running copy of GoldMine
through DDE or COM.

Password: Specifies the user’s password (case insensitive).

You may set this to the return string from the GetLoginCredentials DDE or COM
command if the User parameter is set to *DDE_Login_Credentials*. The credential
string is only valid for 30 seconds.

SysDir: Specifies the location of the LICENSE.DBF.

GoldDir: Specifies the location of CAL.DBF.

ComDir: Specifies the location of CONTACT1.DBF.

SQLUser: The login name for the SQL Server, if applicable.
SQLPassword: The password for the SQL Server, if applicable.

The GMXS32.DLL required the call of GMW_SetSQLUserPass prior to
calling GMW_LoadBDE in order to set the SQL username and password.
This extra call is not used in the XML API.

The returned XML from LoadBDE will indicate if the call succeeded, and if so, a
SessionID. This session ID is used to reference this particular user’s API session.
This is important in applications where multiple users are logged into the API
simultaneiously. Even if the integration will only have one user logged in at a time,
the Session ID must still be referenced in future calls to the XML APL

<GVAPI Sessionl D="1" cal | ="LoadBDE">

<status code="1">BDE | oaded successful | y</status>

</ GVAPI >

The status code will always give a description as to the cause of any generated
errors. The possible return codes are as follows.

LoadBDE Return Values

Return Description

1 BDE loaded successfully

0 BDE already loaded

-1 BDE failed to load

-2 Cannot find license file

-3 Cannot load license file

-4 Cannot validate the license file username/password

149



Integrating With GoldMine

Return Description

-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

-8 General Failure

-9 No access to specified contact set for this user

Logging in Subsequent Users

If an additional user needs to be logged into the XML API], call the Login method.

<GVAPI cal | ="Logi n">
<dat a nanme="User " >MASTER</ dat a>
<dat a nanme="passwor d">ACCESS</ dat a>
<data nanme="ConDir">c:\program fil es\ gol dm ne\ common\ </ data> _
<dat a name="SQL.User ">sa</ dat a>
<dat a name="SQ.Passwor d">nypasswor d</ dat a>
</ GVAPI >

PARAMETERS

The Login function takes five parameters.

User: Specifies the GoldMine user name (case insensitive).

You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to use

login credentials returned for the user logged into a running copy of GoldMine
through DDE or COM.

Password: Specifies the user’s password (case insensitive).

You may set this to the return string from the GetLoginCredentials DDE or COM
command if the User parameter is set to *DDE_Login_Credentials*. The credential
string is only valid for 30 seconds.

ComDir: Specifies the location of CONTACT1.DBF.
SQLUser: The login name for the SQL Server, if applicable.
SQLPassword: The password for the SQL Server, if applicable.

The Login function returns the following XML:

<GWAPI Sessionl D="2" call="Logi n">
<status code="1">Login Successful </status>
</ GVAPI >

150



Integrating With GoldMine

Login Return Values

Return Description

1 Success

0 Failure

-1 User does not have permission to open the current contact set.
Logging Out

To log out a user when multiple users are logged in, use the Logout function. This
function will free the license seat previously used by the Login function. Be sure to
call this function for each session that has been opened.

SYNTAX

XML <GMAPI call="Logout" SessionID="2"/>

PARAMETERS
SessionlD is the integer value returned by the Login function.

RETURNS

The function will return a code attribute of “1” if the specified SessionID was valid.
The returned XML will look like the following;:

<GWAPI Sessionl D="2" cal | ="Logout" >
<status code="1">Logout succeeded for the supplied session.</status>
</ GVAPI >

Unloading the API (GoldMine 7.0 or higher)

Before ending your GoldMine integration application, the API needs to be unloaded.
The XML to unload the APT is as follows:

<GVAPI cal |l ="Unl oadAPI " Sessionl D="1"/>

The actual SessionID will be the value that was returned by the Load API call.

Unloading BDE (GoldMine 6.7)

Before ending your GoldMine integration application, the Borland Database Engine
needs to be unloaded. The XML to unload the BDE is as follows:

<G@VAPI cal |l ="Unl oadBDE" Sessionl D="1"/>

The actual SessionID will be the value that was returned by the LoadBDE call.

151



Integrating With GoldMine

Accessing Data with Business Logic Functions

Reading and modifying GoldMine data with the business logic functions is the best-
practice method for integrating with GoldMine. For the XML root element, the call
will be any business logic function name, as described in Chapter 6, Business Logic
Functions. Each data name will be the name portion of the defined name/value
pairs, and the text for that node is the value portion of a name/value pair. For
example, to create a contact using the GoldMine XML API, one would create an XML
document like the following;:

<GVAPI cal |l ="WiteContact” SessionlD="1">
<dat a nanme="Cont act “>Sam Jackson</ dat a>
<dat a name=”Conpany”>Jackson Heati ng</dat a>
<dat a nanme="Phonel”>(123) 456- 7890</ dat a>

</ GVAPI >

Accessing Nested Nodes of Data

Some business logic functions require or return nodes that contain nested nodes. For
example, if you wish to add members to a contact group, the XML would look like
the following;:

<GWAPI cal | =" AddCont act G pMenbers" Sessi onl D="1">
<dat a name="G oupNo">1234</ dat a>

<dat a name="Menbers">

<dat a name="Account No">A3042474804 \WB9! JCat </ dat a>
<dat a name="Reference">A Reference Val ue</data>

</ dat a>

<dat a name="Menbers">

<dat a name="Account No" >A3082867459( LP: #JGab</ dat a>
<dat a nane="Ref er ence" >Anot her Reference</dat a>

</ dat a>

<dat a name="Menbers">

<dat a nanme="Account No" >A3060244052#3?( N3St e</ dat a>
<dat a name="Reference">The | ast Reference Val ue</data>
</ dat a>

</ GVAPI >

Each time there needs to be an additional node for the Members node, simply repeat
the Members node with the required data. This applies to any business logic
function that requires more than one data value for a node, or more than one nested
node.

Business Logic Function Return Values

The business logic functions will return the same return codes as described in
Chapter 6, Business Logic Functions. An example of the XML returned is as follows:

152



Integrating With GoldMine

Input XML:

<GWAPI call ="WiteContact" SessionlD="1">

<dat a nanme="Cont act">Joe Sm t h</dat a>

<dat a name="Conpany">Joes W ndow Washi ng</ dat a>
<dat a name="phonel" >3106548963</ dat a>

</ GVAPI >

153



Integrating With GoldMine

Returned XML.:

<GWAPI SessionlD="1" call="WiteContact">

<status code="1">Success</ st at us>

<data name="Return">

<dat a name="Account No" >A4100552319*T_S{ 3Del </ dat a>
<dat a nanme=" COVPANY" >Joes W ndow Washi ng</ dat a>
<dat a nanme="CONTACT">Joe Snit h</data>

<dat a nane="PHONE1" >3106548963</ dat a>

<dat a name="Recl D' >AP7Q62B&anp; * AK=3\ T</ dat a>

</ dat a>

</ GVAPI >

Accessing Low-level Data Manipulation Functionality

The following sections describe additional functions in the GoldMine XML API that
allow data reading and updating via low-level methods. Use of the following
functions requires in-depth knowledge of the GoldMine data structures and business
rules. They are useful for accessing and writing data that is not accessible via the
high-level business logic functions.

Retrieving Data with DataStream

DataStream returns the data of ordered records from any GoldMine table using the
most efficient method available. The caller can specity:

¢ Fields and expressions to return

e Range of records to return

e Optional filter to apply to the data set
DataStream SQL query capabilities are very fast on SQL databases.

The DataStream method allows for many useful applications. One such group of
applications would merge HTML templates with the data returned by GoldMine
DataStream to publish the contents of GoldMine data on the Internet. Web pages can
be created to display GoldMine data requested by a visitor. Based on visitor
selections, a company could dynamically present a variety of HTML pages,
including dealer addresses in a particular city, financial numbers stored in Contact2,
and even seating availability at upcoming conferences. With a fast Internet
connection and a strong SQL server, the GoldMine client could respond
simultaneously to dozens of requests.

154



Integrating With GoldMine

Advantages of Using DataStream

GoldMine DataStream is absolutely the fastest way to read data from GoldMine
tables. Used correctly, DataStream will return the data faster than most development
environments would directly. DataStream offers the following advantages:

e Efficiency: DataStream issues a single, most efficient SQL
query or Xbase seek to retrieve records from the back-end
database to the local client. On SQL databases, requests of a
few hundred records could be sent from the server to the
client with a single network transaction, greatly minimizing
network traffic.

e Speed: All fields and expressions are parsed initially by
DS_Range and DS_Query, and then quickly evaluated against
each record in DS_Fetch. Other DDE methods (and
development environments) require that each field be parsed
and evaluated each time its data is read. This makes a big
difference when reading hundreds or thousands of records.

e Simplicity: Only three function calls are required to read all the
data. Using traditional record-by-record querying would
require one call for each field of each record (reading 10 fields
from 50 records would require 500 function calls).

¢ Results: All the work to gather and format the data is done in
C++, which is the fastest method. The caller needs only to
parse the resulting packet string.

DataStream Record Selection

The following DataStream functions are listed in the order in which they must be
called.

DS_Range: Opens a ranged cursor
DS_Query: Opens an SQL query cursor
DS_Fetch: Fetches records

DS_Close: Closes cursor

Either the DS_Range function or the DS_Query function must be called first to
request the data. These functions return the integer handle which must be passed to
the DS_Fetch and DS_Close functions.

You must use either DS_Range or DS_Query —you cannot use both. The DS_Range
and DS_Query functions execute equally fast on SQL databases. DS_Range executes
much faster on Xbase tables than does DS_Query.

155



Integrating With GoldMine

DS_Range
SYNTAX
<GMAPI call = “DS_Range” sessionid="X">
<data name = "Table">CONTACT1</data>
<data name ="Tag">Contacc</data>
<data name="TopLimit"> A3042474804 WB9!Jcat</data>
STl <data name ="BotLimit"> A4090244569#H4J*3Dav</data>

<data
name="Fields">CONTACT;COMPANY;PHONE1</data>

<data name="Filter"/>

</GMAPI>

DS_Range returns a range of records based on an index.

PARAMETERS

The following parameters are required:

Table specifies the table name (such as “Contact1”) or the table ID.

Tag designates the tag that corresponds to the index file.

TopLimit specifies the top limit of the range. (Must conform to the index expression.)

BotLimit (or BottomLimit) specifies the bottom limit of the range. (Must conform to
the index expression.)

Fields specifies the requested fields and expression to return —see “DS_Range Field
Selection” on the following page.

The following parameters are optional:
Filter designates an optional Xbase filter expression.
RETURN VALUES

The XML returned by DS_Range will look like the following;:

<GWAPI Sessionl D="2" cal | ="DS_Range" >
<status code="1">1</status>
</ GVAPI >

The text of the code attribute is used as the “Area” or “Handle” value for DS _Fetch.

The DS_Range function returns the following values:

GMW_DS_Range Return Values

Return Description
0 Failure
1-20 Success (handle)

156



Integrating With GoldMine

DS_RANGE FIELD SELECTION
The Fields parameter passed to DS_Range should consist of the field names and
Xbase expressions to evaluate against each record in the data set. Each field must be
terminated with a semicolon (;). Xbase expressions must be prefixed with an
ampersand (&), and terminated with a semicolon. Be sure to XML encode this as the
ampersand is an XML entitiy.

DS_Query
SYNTAX
<GMAPI call ="DS_Query” SessionID ="1">
<data name = “SQL”>select recid from contsupp</data>
XML

<data name=“Filter">xBase expression filter</data>
</GMAPI>

This function is very fast on SQL databases.

PARAMETERS

SQL query sends the query for evaluation on the server. The SQL query can join
multiple tables and return any number of fields.

Optional parameter Filter specifies a Boolean Xbase filter expression to apply to the
data set (even on SQL tables), similar to the DDE SETFILTER command.

RETURN VALUES
The DS_Query function returns the following values:

DS_QueryReturn Values

Return Description
0 Failure
-1 Invalid Query/Timeout
1-20 Success (handle)
DS Fetch

DS_Fetch returns a single packet string containing the requested data from all records
processed by the current “fetch” command.

SYNTAX
XML <GMAPI call="DS_Fetch” SessionID="3">
<data name="Area”>Value returned from Query or
Range</data>

<data name="RecordCount”>50</data>
<data name="Raw”>1</data>
</GMAPI>

157



Integrating With GoldMine

PARAMETERS:

RecordCount (or RecCount) specifies the number of records to return.

Area must be the value returned from DS_Range() or DS_Query().

OPTIONAL PARAMETERS:

FldDmt (or FieldDelimiter) specifies the field delimiter (default: carriage return). Omit
this data node completely to use the default value.

RowDmt (or RowDelimiter) specifies the record delimiter (default: line feed). Omit
this data node completely to use the default value.

Raw indicates the format the data should be returned as. The default (“0”) puts the
data into XML format. Setting Raw to “1” returns the data stream in the old return
packet format, as described below.

For details about the packet format, see “DS_Fetch Return Packet” below.

THE XML RETURN PACKET

DS_Fetch has an option in the GoldMine XML API to return the data in an XML
format that is easier to process than the traditional datastream return packet.
Consider the following DS_Query XML call:

<GWAPI cal |l ="DS_Query" SessionlD="1">

<dat a name="SQ.">sel ect contact, conpany, keyl from contactl where
cont act =" Raf ael Zi nber of f ' </ dat a>

<data nanme="Filter"/>
</ GVAPI >

Returns:
<GWAPI Sessionl D="1" cal | ="DS_Query"><st atus code="1">1</ st at us></ GVAPI >

The DS_Fetch call to retrieve the requested data is:
<GVAPI cal | ="DS_Fetch" Sessionl D="1">
<dat a name="Area">1</dat a>
<dat a name="Raw'>0</ dat a>
<dat a nanme="Recor dCount " >25</ dat a>
</ GVAPI >

The resulting XML datastream return packet is:

<GWAPI Sessionl D="1" cal |l ="DS_Fetch">
<status code="1">Success</ st at us>
<dat a nane="Return">

158



Integrating With GoldMine

<dat a nane="Header" >

<data nane="field">

<dat a nanme="Fi el d_Nane" >CONTACT</ dat a>
el d_Type" >C</ dat a>

el d_Lengt h" >40</ dat a>
<dat a nanme="Fi el d_Deci nal " >0</ dat a>

</ dat a>

<dat a nane="Fi

<dat a nane="Fi

<data nane="field">

el d_Nane" >COVPANY</ dat a>
el d_Type" >C</ dat a>

el d_Lengt h" >40</ dat a>

el d_Deci mal " >0</ dat a>

<dat a nanme="F
<dat a nane="Fi

<dat a nane="Fi

<dat a nane="Fi
</ dat a>

<data name="fiel d">

el d_Nane" >KEY1</ dat a>
el d_Type" >C</ dat a>

el d_Lengt h" >20</ dat a>
el d_Deci mal " >0</ dat a>

<dat a nanme="F

<dat a nanme="F
<dat a nane="Fi

<dat a nanme="Fi
</ dat a>

</ dat a>

<dat a nane=" Count Dat a" >3000- 0001</ dat a>
<dat a nanme="Rows" >

<dat a Name="Row'>

<dat a name="CONTACT" >Raf ael Zi nber of f </ dat a>
<dat a nanme="COVPANY" >Z- Fi rm LLC</ dat a>

<dat a name="KEY1">Part ner </ dat a>

</ dat a>

</ dat a>

</ dat a>

</ GVAPI >

The Header node contains child nodes for each field included in the SQL query,
describing the fields” properties. The CountData node’s text corresponds with the
old fetch return packet’s header data:

The first digit can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another
DS_Fetch call

3 indicates the end-of-file (EOF)
4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in
the packet.

The Rows node contains a child node for each data record returned by the query.

159



Integrating With GoldMine

DS_FETCH RETURN PACKET

DS_Fetch returns a single packet string containing the data from all requested records.
The packet includes a header record, followed by one record for each record evaluated
by “fetch.” Within each record in the packet, the fields are separated by a field
delimiter specified in DS_Fetch. By default, the field delimiter is the carriage return
character (13 or 0x0D).

The records in the packet are separated by the record delimiter. By default, the
record delimiter is the line feed character by default (10 or 0x0A).

These delimiters are convenient when the requested data does not contain notes
from blob fields. You can omit FldDmt and RowDmt to use the default delimiters.
When requesting notes, override the default delimiters by passing other delimiter
values to DS_Fetch. For packets with notes, good delimiters are the ASCII characters
1and 2.

The XML example above might return xml similar to:

<GWAPI Sessionl D="3" cal |l ="DS_Fetch">
<status code="1">3000-0003
A3053029581% O6B3Si m

A4082371189* &gt ; $&gt ; B3Vi n
A4090244569#H4J* 3Dav

</ status>

</ GVAPI >

The packet header record consists of two sections:
First byte can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another
DS_Fetch call

3 indicates the end-of-file (EOF)
4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in
the packet.

DS_Close

DS_Close must be called when the operation is complete. Unclosed data streams will
leak memory and leave the database connections needlessly open. Passing an Area
(or Handle) of 0 closes all open DataStream objects.

SYNTAX

<GMAPI call="DS_Close" SessionID="4">
XML <data name="Area">1</data>
</GMAPI>

160



Integrating With GoldMine

DS_Close returns the following XML:

<GWAPI Sessionl D="4" call="DS_C ose" >
<status code="1">Success</ st at us>

</ GVAPI >

Accessing Low-Level Data Using Work Areas

The GoldMine XML API provides a complete set of functions that allow low-level
access to the database tables. Using these functions, you can:

Open particular data files

Seek the values of the fields in the records in the data files
Append records to the tables

Delete records

Replace data in the records

Database applications that need varied access to GoldMine data typically use this
suite of functions. To work successfully, these functions rely on a work area
parameter. Using this parameter, you can open multiple data files concurrently and
manipulate each file independently by referencing the file by work area. These functions
also maintain synchronization information, which is stored in the TLogs.

The GoldMine XML API offers the low-level access functions that are listed in the

following table.

GMXS32.DLL Low-Level Access Functions

Function Name

Description

Opening and Closing Databases

DB_Open Opens one GoldMine data file for processing by another application
DB_Close Releases a previously OPENed file when processing is complete
DB _IsSQL Determines whether the table is SQL (1) or Xbase (0)

Creating and Deleting Records

DB_Append

Adds a new, empty record to a GoldMine data file

DB_Delete

Deletes the current record in the specified work area.

Reading and Writing

Data

DB Read Queries a data file for the value of a field
DB_RecNo Determines either current record number position (Xbase), or the
record ID (SQL)
DB_Replace Changes the value in a particular field in one GoldMine data file
DB_Unlock Unlocks a record previously locked by a call to either GMW_DB_Append or

GMW_DB_Replace

161




Integrating With GoldMine

Function Name

Description

Limiting Scope of Data

DB_Filter Limits access to data in a GoldMine database by creating a subset of records
based on expression criteria
DB_Range Activates the index in a table, and sets a range of values to limit the scope of

data that GoldMine will search

Searching for Data

DB_Search

Performs a sequential search on a file

DB_Seek

Positions to the first record matching the seek value

DB_SetOrder

Sets the current index tag on the table

Navigating the

Database

DB_Move Positions the record pointer to a particular record in a data file
DB_Goto Positions to a specific record in the table

DB_Top Positions to the first record in the table

DB_Skip Positions to the next or prior record in the table

DB_Bottom Positions to the last record in the table

GMXS32.DLL Low-Level Access Functions

Function Name

Description

DB_QuickSeek

Wraps several DLL functions to perform a Seek based on an index

DB_QuickRead

Wraps several DLL function to perform a Read

DB_QuickReplace

Wraps several DLL functions to perform a Replace

Detailed descriptions of each database access function appear on the following
pages. Some of the following functions refer to table names, field names, and index
tags. For details, see “Xbase Database Structures” on page 383 or SQL Database
Structures” on page 399.

Opening a Data File

DB_Open opens one GoldMine data file for processing by another application. Be
sure to call DB_Close after completing all operations on the open table. Failing to do
so will cause the Unload API or UnloadBDE function to wait indefinitely for the

resource to close.

SYNTAX
<GMAPI call="DB_Open" Session|D="1">
XML <data name="Table">Contactl</data>
</GMAPI>
PARAMETER

The DB_Open function takes only Table(or File), which is the name of the table to be

opened.

162




Integrating With GoldMine

RETURN VALUES
The XML returned by DB_Open for a successful call will look like the following:
<GWAPI Sessionl D="2" cal | ="DB_Cpen">

<status code="1">76007040</ st at us>
</ GVAPI >

The code attribute will be 1 on success and the text of the attribute is the workarea to
be used for subsequent low-level calls. If the call is unsuccessful, the code will be 0
and the text will indicate an error.

DB_Open Code Attribute Values

Code Text
0 Error occurred
1 Work area handle for table, for example 57919176

Closing a Data File

DB_Close releases a previously opened file when processing is complete. All
previously opened files must be properly closed —failure to do so can result in
database errors.

SYNTAX
<GMAPI call="DB_Close" SessionID="2">
XML <data name="Area">76007040</data>
</GMAPI>
PARAMETERS

The DB_Close function takes only Area, which is the work area handle of the file
opened by the DB_Open function.

RETURN VALUES
DB_Close returns the following XML on success:

<GWAPI Sessionl D="2" cal |l ="DB_C ose">
<status code="1">Success</ st at us>
</ GVAPI >

Checking for an SQL Table
DB_IsSQL is used to determine if the table is MSSQL (1) or Other (0).

SYNTAX

<GMAPI call="DB_IsSQL" SessionID="3">
XML <data name="Area">76021592</data>
</GMAPI>

163



Integrating With GoldMine

PARAMETER

The DB_IsSQL function takes only Area, which is the work area handle of the file
opened by the DB_Open function.

RETURN VALUES
The DB_IsSQL function returns the following values:

<GWAPI SessionlD="3" call="DB_|IsSQ">
<status code="0">The open file is xBase.</status>

</ GVAPI >
DB_IsSQL Code Attribute Values
Code Description
0 The open file is Other
1 The open file is MSSQL

Adding a Record

DB_Append adds an empty record to a GoldMine data file.

SYNTAX

<GMAPI call="DB_Append" SessionID="3">
XML <data name="Area">76021592</data>
</GMAPI>

Before using DB_Append, you must open a data file using the DB_Open function.
After executing the DB_Append function, the record pointer is positioned at the new
empty record, and the record is locked and ready to accept field replacements.

When a CONTACT1 record is appended, GoldMine automatically fills in the new
record with the appropriate ACCOUNTNO and CREATEBY values. For all other
records, you must replace the ACCOUNTNO field with the value from the
CONTACT1 record with which the new record is to be linked. The GoldMine XML
API will automatically fill in the value of the RECID field.

PARAMETERS
Area is the work area handle of the file opened by the DB_Open function.

RETURN VALUE

Xbase: APPEND function returns the record number of the new record as the code
attribute, or 0 if the file could not be locked. The text of the code attribute is also the
record number in xBase, Record ID in SQL and FireBird.

<GWAPI Sessionl D="3" cal | =" DB_Append" >
<st at us code="64">64</ st at us>
</ GVAPI >

164



Integrating With GoldMine

SQL: APPEND function returns the RECID of the new record in the text of the code
attribute. The code will be 1 or 0 indicating success or failure.

<GWAPI Sessionl D="3" cal | =" DB_Append" >
<status code="1">9NDIJRIN( EQ ) JW </ st at us>
</ GVAPI >

Deleting the Current Record

DB_Delete deletes the current record in the specified work area and moves the
record pointer to the next record.

SYNTAX
<GMAPI call="DB_Delete" SessionlD="4">
XML <data name="Area">73140736</data >
</GMAPI>
PARAMETER

The DB_Delete function takes only Area, which is the work area handle of the file
opened by the DB_Open function.

RETURN VALUES
The DB_Delete function returns the following XML:

<GWAPI Sessionl D="4" cal | ="DB_Del ete">
<status code="1">Success</status>
</ GVAPI >

DB_Delete Code Attribute Values

Code Description
0 Error occurred
1 Record deleted

Reading a Field Value
DB_Read queries a data file for the value of a field.

SYNTAX
<GMAPI call="DB_Read" SessionID="5">
XML <data name="Area">73154424</data>
<data name="Field">Company</data>
</GMAPI>
PARAMETERS

Area is the work area handle of the file opened by the GMW_DB_Open function.
Field is the name of the field to read within the table.

165



Integrating With GoldMine

RETURN VALUE
The XML returned for DB_Read using the sample XML above is as follows:

<GWAPI Sessionl D="5" cal | ="DB_Read">
<status code="1">Front Range Sol utions, Inc.</status>
</ GVAPI >

DB_Range Code Attribute Values

Code Description
0 Error occurred
1 Success

Checking the Current Record Number or Record ID

DB_RecNo is used to determine either current record number position (Xbase) or the
record ID (SQL or FireBird).

SYNTAX
<GMAPI call="DB_RecNo" SessionID="7">
XML <data name="Area">73166392</data>
</GMAPI>
PARAMETERS

Area is the work area handle of the file opened by the DB_Open function.

RETURN VALUE
Xbase: Returns the current record number

SQL: Returns the current RecID

The returned XML will look like the following;:

<GWAPI Sessionl D="7" cal | ="DB_RecNo" >
<status code="1">BDNHWD5#0PA5] W/</ st at us>
</ GVAPI >

Changing a Field Value

DB_Replace changes the value in a particular field in one GoldMine data file. After
all replace operations on a single record are complete, the record must be unlocked
using DB_Unlock.

SYNTAX
<GMAPI call="DB_Replace" SessionID="9">
<data name="Area">73177576</data>
XML <data name="Field">Contact</data>

<data name="NewValue">XML Contact</data>
<data name="Append">0</data>
</GMAPI>

166



Integrating With GoldMine

PARAMETERS
Area is the work area handle of the file opened by the DB_Open function.

Field specifies the name of the field to be replaced.
NewValue specifies the data to be placed in the field.
Append indicates if the data is to be appended to the existing data. A value of 1 will

append the data. A value of 0 will overwrite the data.

RETURN VALUES

The DB_Replace function returns the following XML:
<GWAPI Sessionl D="9" call="DB_Repl ace">
<status code="1">Success</ st at us>
</ GVAPI >

DB_Replace Code Attribute Values

Code Description
0 Error occurred
1 Field was successfully replaced

Unlocking a Record

DB_Unlock unlocks a record previously locked by a call to either DB_Append or
DB_Replace.

SYNTAX
<GMAPI call="DB_Unlock" SessionID="3">
XML <data name="Area">75885408</data>
</GMAPI>
PARAMETER

The DB_Unlock function takes only Area, which is the work area handle of the file
opened by the DB_Open function.

RETURN VALUES

The DB_Unlock function returns the following XML:
<GWAPI Sessionl D="3" cal | ="DB_Unl ock" >
<status code="1">Success</ st at us>
</ GVAPI >

DB_Unlock Code Attribute Values

Code Description
0 Error occurred
1 Success

167



Integrating With GoldMine

Creating a Subset of Records

DB_Filter limits access to data in a GoldMine database by creating a subset of
records based on expression criteria. This function is similar to DB_Range. If
successfully called, all other functions (Top, Bottom, Skip, and so on) will respect the
filter.

SYNTAX
<GMAPI call="DB_Filter" SessionID="1">
XML <data name="Area">57919176</data>
<data name="Filter">contact1-&gt;contact="Paul Redstone"</data>
</GMAPI>
NOTE

The Filter value above is XML encoded. Passing the value contactl->contact="Paul
Redstone” through an XML Parser would handle the XML encoding automatically.

PARAMETERS
Area is the work area handle of the file opened by the GMW_DB_Open function.

Filter (or FilterExpr, Expr, Expression) is the valid Xbase expression. To remove the
filter, send an empty string as the second parameter.

RETURN VALUES
The DB_Filter function returns the following XML:

<GWAP|I SessionlD="1" call="DB Filter">
<status code="1">Success</ st at us>
</ GVAPI >

DB_Filter Code Attribute Values

Code Description
0 Failure
1 Success

Limiting Search Scope

DB_Range activates the index in a table and sets a range of values to limit the scope
of data that GoldMine will search. This function is faster than DB_Filter.

The Min and Max values must be formatted the same as the selected index tag’s
expression.

If successfully called, all other functions (Top, Bottom, Skip, etc.) will respect the
range.

168



Integrating With GoldMine

SYNTAX
<GMAPI call="DB_Range" SessionID="1">
<data name="Area">57917464</data>
XML <data name="Min">A3042474804 WB9!JCat </data>
<data name="Max">A4090244569#H4J*3Dav</data>
<data name="Tag">Contacc"</data>
</GMAPI>
PARAMETERS

Area is the work area handle of the file opened by the GMW_DB_Open function.
Min specifies the minimum or lower value of the range.

Max specifies maximum or upper value of the range.

Tag is the index tag name.

RETURN VALUES

The DB_Range function returns the following XML:

<GWAPI Sessionl D="1" cal | =" DB_Range" >
<status code="1">Success</status>
</ GVAPI >

DB_Range Code Attribute Values

Code Description
0 Error occurred
1 Success

Performing a Sequential Search

DB_Search performs a sequential search on a file.

SYNTAX
<GMAPI call="DB_Search" SessionID="1">
XML <data name="Area">60211128</data>
<data name="Expression">contact1-&gt;contact="David Evans"</data>
</GMAPI>
PARAMETERS

Area is the work area handle of the file opened by the GMW_DB_Open function.

Expr (or Expression) is the valid Xbase expression. For a record to be “found” this
expression must result as TRUE. Be sure to XML encode this, since the “>” in an
Xbase expression is an XML entity.

169



Integrating With GoldMine

RETURN VALUES
The DB_Search function returns the following XML:
<GWAPI Sessionl D="1" cal | ="DB_Search">

<status code="1">23</stat us>
</ GVAPI >

The text of the code attribute will be the record number for dBase databases, and the
ReclID for SQL databases.

DB_Search Code Attribute Values

Return Description
0 No match found
1 Success —the text of the attribute will be:
Xbase: RecNo of the matching record; SQL: ReclD of the matching record

Moving to the First Record Match

DB_Seek positions to the first record matching the seek value. DB_SetOrder must be
called at some point prior to calling DB_Seek in order to set an index tag.

SYNTAX
<GMAPI call="DB_Seek" SessionID="1">
XML <data name="Area">60211128</data>
<data name="Expression">A3100554903(ZUW)3Dav</data>
</GMAPI>
PARAMETERS

Area is the work area handle of the file opened by the GMW_DB_Open function.

Param is the value you will seek. This value must match the format of the index
expression for the currently active index.

RETURN VALUES
The DB_Seek function returns the following XML:

<GWAPI Sessionl D="1" cal | =" DB_Seek">
<status code="1">Success- Exact mmtch found. </status>
</ GVAPI >

DB_Seek Return Values

Return Description

0 Error occurred

1 Exact match found. Cursor moved to record.

3 Exact match not found. Cursor placed at closest matching record.

170



Integrating With GoldMine

Setting the Current Index Tag
DB_SetOrder sets the current index tag on the table.

SYNTAX
<GMAPI call="DB_SetOrder" SessionID="1">
XML <data name="Area">60211128</data>
<data name="Tag">CONTACC</data>
</GMAPI>
PARAMETERS

Area is the work area handle of the file opened by the DB_Open function. Tag is the
name of the index tag to activate on the table. For a list of index names, see
“Database Structures” on page 383.

RETURN VALUES
The DB_SetOrder function returns the following XML:

<GWAPI Sessionl D="1" cal | ="DB_Set Order">
<status code="1">Success</ st at us>
</ GVAPI >

DB_SetOrder Code Attribute Values

Code Description

0 Error occurred

1 Index successfully activated

Positioning the Record Pointer

DB_Move positions the record pointer to a particular record in a data file.

SYNTAX
<GMAPI call="DB_Move" SessionID="1">
<data name="Area">60211128</data>
XML <data name="Command">SKIP</data>
<data name="Parameter">2</data>
</GMAPI>
PARAMETERS

Area is the work area handle of the file opened by the GMW_DB_Open function.

Command is the command to execute. Each of these commands has an independent
function equivalent that is the preferred method to use. This function remains as a
legacy to its DDE counterpart.

Parameter is the scope or value for the command.

DB_Move Commands and Function Equivalents

Command Parameter Function Equivalents

171



Integrating With GoldMine

Command Parameter Function Equivalents
TOP Not required DB _Top

BOTTOM Not required DB_Bottom

SKIP Number of records to skip DB_Skip

GOTO Record Number/RecID DB_Goto

SEEK Search key value DB_Seek

SETORDER Index Tag DB_SetOrder

RETURN VALUES
The DB_Move function returns the following XML:

<GWAPI Sessionl D="1" cal | ="DB_Mbove">

<status code="1">Exact match found. Cursor noved to record or index
acti vat ed. </ st at us>

</ GVAPI >

DB_Move Code Attribute Values

Code Description

0 Error occurred

Exact match found. Cursor moved to record or index-activated.

Exact match not found. Cursor placed at closest matching record.

1

2

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to a Specified Record

DB_Goto positions to a specific record in the table.

SYNTAX
<GMAPI call="DB_Goto" SessionID="1">
XML <data name="Area">60211128</data>
<data name="RecordNumber">9Z2RME8(X%(!3\T</data>
</GMAPI>
PARAMETERS

Area is the work area handle of the file opened by the GMW_DB_Open function.

RecNo (or RecordNumber) specifies where the cursor should be placed, and is either
the Record number for Xbase or the RecID for SQL. The RecID works for Xbase as
well.

172



Integrating With GoldMine

RETURN VALUES
The DB_Goto function returns the following XML:

<GWAPI SessionlD="1" cal | ="DB_Coto0">

<status code="1">Exact match found. Cursor noved to record or index
activated. </status>

</ GVAPI >

DB_Goto Code Attribute Values

Return Description

0 Error occurred

Exact match found. Cursor moved to record or Index activated.

Exact match NOT found. Cursor placed at closest matching record.

1

2

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to the First Record

DB_Top positions to the first record in the table. This function should not be called
with an SQL database.

SYNTAX
<GMAPI call="DB_Top" SessionID="1">
XML <data name="Area">60211128</data>
</GMAPI>
PARAMETER

The DB_Top function takes only Area, which is the work area handle of the file
opened by the DB_Open function.

RETURN VALUES

The DB_Top function returns the following XML:
<GWAPI SessionlD="1" cal | ="DB_Top">
<status code="1">Success</ st at us>
</ GVAPI >

DB_Top Code Attribute Values

Code Description
0 Error occurred
1 Cursor moved to top of file

173



Integrating With GoldMine

Moving to the Previous or Following Record

DB_Skip positions to the previous or following record in the table.

SYNTAX
<GMAPI call="DB_Skip" SessionID="1">
XML <data name="Area">60211128</data>
<data name="Skip">3</data>
</GMAPI>
PARAMETERS

Area is the work area handle of the file opened by the DB_Open function.

Skip specifies the number records to skip. This value can be positive to move
forward in the table or negative to move backwards.

RETURN VALUES

The DB_Skip function returns the following XML:
<GWAPI Sessionl D="1" cal | ="DB_Ski p">
<status code="1">Success</ st at us>
</ GVAPI >

DB_Skip Code Attribute Values

Return Description

0 Error occurred

Cursor successfully moved

1
3 Cursor at end-of-file (EOF)
4 Cursor at beginning-of-file (BOF)

Moving to the Last Record

DB_Bottom positions to the last record in the table.

SYNTAX
<GMAPI call="DB_Bottom" SessionID="1">
XML <data name="Area">60211128</data>
</GMAPI>
PARAMETER

The DB_Bottom function takes only Area, which is the work area handle of the file
opened by the DB_Open function.

174



Integrating With GoldMine

RETURN VALUES
The DB_Bottom function returns the following XML:
<GWAPI Sessionl D="1" cal | ="DB_Bottoni >

<status code="1">Success</status>
</ GVAPI >

DB_Bottom Code Attribute Values

Code Description

0 Error occurred

1 Cursor positioned on the last record in the table

Seeking a Record

DB_QuickSeek wraps several other database functions to provide a quick and easy
way to seek a record in the database.

SYNTAX
<GMAPI call="DB_QuickSeek" SessionID="1">
<data name="Table">Contactl</data>
XML <data name="Index">CONTACC</data>
<data name="SeekValue">A3100554903(ZUW)3Dav</data>
</GMAPI>
PARAMETERS

Table is the name of the table to be opened.
Index is the index to use for the table.
SeekValue is the seek expression to use.
RETURN VALUES

The DB_QuickSeek function returns the following XML:

<GWAPI Sessionl D="1" cal | ="DB_Qui ckSeek" >
<status code="1">9Z2RVME8( X% ! 3\ T</ st at us>
</ GVAPI >

DB_QuickSeek Code Attribute Values

Return Description
-2 Invalid Index
-1 Invalid table
0 Failure
Success — The text will be the recid of the found record.

175



Integrating With GoldMine

Reading a Field Value

DB_QuickRead wraps several other database functions to provide a quick and easy
way to read a field value from a record in the database.

SYNTAX
<GMAPI call="DB_QuickRead" SessionID="1">
<data name="Table">Contactl</data>
XML <data name="Recid">9Z2RME8(X%(!3\T</data>
<data name="Field">Contact</data>
</GMAPI>
PARAMETERS

Table is the name of the table to be opened.
RecID (or RecordID) is the RecID of the record from which to read.

Field (or FieldName) is the Field name to return.

RETURN VALUES
The DB_QuickRead function returns the following XML:

DB_QuickRead Code Attribute Values

Return Description
-4 Invalid Fieldname
-3 ReclD not found
-2 Invalid ReclD
-1 Invalid table
0 Failure

Success

Replacing a Field Value

DB_QuickReplace wraps several other database functions to provide a quick and
easy way to replace a field value from a record in the database.

SYNTAX

<GMAPI call="DB_QuickReplace" SessionID="1">
<data name="Table">Contactl</data>
<data name="Recid">9Z2RME8(X%(!3\T</data>
XML <data name="Field">Key3</data>
<data name="Data">Updated by XML API</data>
<data name="AddTo">0</data>
</GMAPI>

176



Integrating With GoldMine

PARAMETERS
Table is the name of the table to be opened.

RecID (or RecordID) is the RecID of the record to be updated.

Field (or FieldName) is the Field name to replace.

Value (or Data, NewValue) is the value to store in the field.

AddTo (or Append) indicates if the value data is to be appended (1) or replaced
(O=default).

RETURN VALUES
The DB_QuickReplace function returns the following XML:
<GWAPI Sessionl D="1" cal | ="DB_Qui ckRepl ace" >

<status code="1">Success</status>
</ GVAPI >

DB_QuickReplace Code Attribute Values

Return Description
-4 Invalid Fieldname
-3 ReclD not found
-2 Invalid ReclD
-1 Invalid table
0 Failure

Success

Returning Calendar Data

The ReadSchedule call returns all calendar data for a given RecID.

SYNTAX
<GMAPI call="ReadSchedule" SessionID="XXX">
XML <data name="RecID">BUAQI60!* C8]WV</data>
</GMAPI>

RETURN VALUES
The ReadSchedule call returns the following XML:

<GVAPI cal | =" ReadSchedul e" Sessi onl D=" XXX" >

<st atus code="1">Success</ st at us>

<dat a nane="Return">
<dat a name=" ACCOUNTNO' >A5040658567&anp; _: +] vat </ dat a>
<dat a nane=" ACTVCODE"/ >
<dat a nane=" COLORCODE" >0</ dat a>
<dat a nanme=" CONTACT" >Matt hew W &anp; Kat hl een Bl ackl ock</ dat a>
<dat a nane="DURATI ON'> 30</ dat a>
<dat a nanme="LI NK">1</ dat a>
<dat a nanme="LOPRECI D'> UAQ 6Q( ( X$] ] W</ dat a>

177



Integrating With GoldMine

<dat a name="NOTI FY" >0</ dat a>
<dat a nane=" ONDATE" >20060530</ dat a>
<dat a nanme="ONTI ME"> 7: 00am </ dat a>
<dat a nane=" PRI VATE" >0</ dat a>
<dat a nanme="RECI D'>BUAQ 60 * C8] W</ dat a>
<dat a nane=" RECTYPE" >C</ dat a>
<dat a nane="REF"/>
<dat a nane="RSVP" >0</ dat a>
<dat a nanme=" UPDATERELATED" >0</ dat a>
<dat a nane="USERI D' >QUY</ dat a>
</ dat a>
</ GVAPI >

For Sales-type records, The ReadSchedule call returns more data:

<@VAPI cal | =" ReadSchedul e" Sessi onl D=" XXX" >

<status code="1">Success</ st at us>

<dat a nanme="Return">
<dat a name=" ACCOUNTNO' >A5040658567&anp; _: +] Mat </ dat a>
<dat a nane=" ACTVCODE" >AA </ dat a>
<dat a nanme=" AMOUNT" >1110</ dat a>
<dat a nane=" COLORCODE" >0</ dat a>
<dat a name=" CONTACT" >Matt hew W &anp; Kat hl een Bl ackl ock</ dat a>
<dat a nanme="DURATI ON'> 30</ dat a>
<dat a nanme="LI NK">1</ dat a>
<dat a name="LOPREC| D'> UAQROL&anp; 6K] O W</ dat a>
<dat a nane="NOT| FY" >0</ dat a>
<dat a nanme=" ONDATE" >20060530</ dat a>
<dat a nanme="ONTI VE"/ >
<dat a nanme="POTNSALE">1110</ dat a>
<dat a nane=" PRI VATE" >0</ dat a>
<dat a nanme="PROBSALE" >30</ dat a>
<dat a name="RECI D' >BUAQROL( ?B&anp; +] W/</ dat a>
<dat a nanme=" RECTYPE" >S</ dat a>
<dat a name="REF">Johnny Appl e Sauce! </data>
<dat a nanme="RSVP">1</ dat a>
<dat a nane="UNl TSSALE" >2</ dat a>
<dat a nanme=" UPDATERELATED" >0</ dat a>
<dat a nane="USERI D' >QUY</ dat a>

</ dat a>

</ GVAPI >

Updating Sync Logs

The GoldMine XML API provides a method to update GoldMine synchronization
logs whenever an external application updates GoldMine data.

The GoldMine XML API offers the following synchronization functions:
UpdateSyncLog: Updates the sync log file

ReadlmpTLog: Imports a prepared TLog import file

NewRecID: Gets a new RecID

SyncStamp: Converts sync stamp to time and converts time back to sync stamp

178



Integrating With GoldMine

Updating the Sync Log File

SYNTAX
<GMAPI call="UpdateSyncLog" SessionID="1">
<data name="Table">Contactl</data>
XML <data name="RecID">9NDJRJIN(EQ[)JW:</data>
<data name="Field">Key3</data>
<data name="Action">U</data>
</GMAPI>
PARAMETERS

Table specifies the table name (such as “Contactl”) or the table ID.

RecID specifies the RecID of the updated record: the correct RecID must be passed,
and the RecID value must be exactly 15 characters long.

Field specifies the name of the field that has changed. This parameter is only relevant
when the Action parameter is U. Field is ignored when Action is N or D.

Action should be N when a new record has been appended, D when a record has
been deleted, or U when a field in a record has been updated.

RETURN VALUES

The UpdateSyncLog function returns the following XML:
<GWAPI Sessionl D="1" cal | =" Updat eSyncLog" >
<status code="4">Field TLog entry created. </status>
</ GVAP| >

UpdateSyncLog Code Attribute Values

Return Description

0 Error

1 New TLog entry created

2 New TLog entry updated

4 Field TLog entry created

8 Field TLog entry updated

16 Deleted record TLog entry created
32 New TLog Entry removed

179



Integrating With GoldMine

Importing a Prepared TLog Import File

ReadImpTLog reads the status of a TLog import file, then deletes the import file
when the process is completed.

SYNTAX
<GMAPI call="ReadlmpTLog" SessionID="1">
XML <data name="File">c:\tlogs\mytlog.dbf</data>
<data name="Delete">1</data>
</GMAPI>
PARAMETERS

File specifies the import file name —see below for the import file structure.
Delete specifies to delete the import file when the process has completed.
RETURN VALUES

ReadImpTLog function returns the following values in the code attribute:

ReadlmpTLog Code Attribute Values

Code Description

0 Failure

1 Success -- Text is total number of imported TLog records
NOTES

LoadAPI or LoadBDE must be called before calling ReadImpTLog for the first time.
Your application can determine when the imported process completes by setting the
Delete parameter to 1, and noting when the import file is deleted. The TLog import
must have the structure shown in the following table.

TLog Import Structure

Field Name Type Length
Table ID char 10
ReclD char 15
Field ID char 10
Action ID char 1

Getting a New Record ID

NewRecID returns a new ReclD in the text of the code attribute of the returned XML.

SYNTAX

<GMAPI call="NewRecID" SessionID="1">
XML <data name="User">KEVIN</data>
</GMAPI>

180



Integrating With GoldMine

PARAMETERS
User specifies the GoldMine user name.

RETURN VALUE
<@QVWAPI Sessionl D="1" cal | =" NewRecl| D' >

<status code="1">AQNBHKO | 9&anp; =$R</st atus>
</ GVAPI >

NOTES
The resulting Recid is XML encoded because it contains an XML entity. Reading the

text of the code attribute via an XML Parser would return the correctly XML
unencoded RecID.
Converting the Sync Stamp

SyncStamp converts Sync Stamp to time format and back.

SYNTAX
<GMAPI call="SyncStamp" SessionID="1">
XML <data name="Stamp">19980201:19:01:30</data>
</GMAPI>
PARAMETERS

When the Stamp parameter is exactly 17 characters long, formatted as Date:Time in
form of CCYYMMDD:HH:MM:SS, the return string in the code attribute’s text is in
TLog timestamp format, exactly seven characters long. When the Stamp parameter is
seven characters long formatted as a TLog timestamp, the return string in the code
attribute’s text is formatted as CCYYMMDD:HH:MM:SS.

RETURN VALUES
The SyncStamp function returns the following example XML:
<GWAPI Sessionl D="1" cal | =" SyncSt anp"” >

<status code="1">5V1QWb0</ st at us>
</ GVAPI >

SyncStamp Code Attribute Values

Code Description

0 Failure

1 Success
NOTES

An empty return string indicates an error.

181



Integrating With GoldMine

Using MSXML to Handle GoldMine APl XML

MSXML isjust one DOM parser that can be used to format and parse the XML to pass to the
GoldMine XML API. This section will give a brief tutorial of functions that can be used to
handle the GoldMine XML document. It does not comprehensively document MSXML,;
please refer to Microsoft’s Developer Network (MSDN) for complete MSXML
documentation. Another parser that isavailableis Xerces.

Getting Started

The examples in this section will use functions and syntax from Microsoft XML 4.0
and Visual Basic 6.0. Include a reference to Microsoft XML, v. 4.0 in your
development project. To create a document reference, use the following code:

Di m doc As DOvDocunent 40
Set doc = New DOVDocunent 40

The XML document is now ready to be composed.

Defining the Root Element

The root element for the GoldMine XML API is GMAPI. The code below sets this
value:

DmxmiIn As String

xm I n = "<GVAPI [ >"
Di m doc As DOVDocunent 40
Set doc = New DOVDocunent 40

doc.l oadXM. xm In

Di m el Root As | XMLDOVEIl enent
Set el Root = doc. docunent El enent

Creating an IXMLDOMElement object and setting it to doc.documentElement
provides a reference to the root element of the document. This allows for easy
updating to that element later on.

Setting Attributes

The attributes of an element define a specific setting or provide additional
information to an element. Attributes appear in an element’s start tag and are in a
name/value pair format. The GoldMine XML API typically expects two attributes
for the root element: call and sessionid.

182



Integrating With GoldMine

To set an attribute, use the SetAttribute method in the documentElement object. The
following code assumes the elRoot object defined above.

el Root.setAttribute "call", "DB_Open"
el Root . setAttri bute "Sessionl D', sSessionlD

Referencing an Attribute

The call attribute for the GMAPI root element will likely need to be changed many
times in the course of your application. A reference to this attribute can be obtained

by calling the following code:

Dmatt As | XMLDOVAttri bute
Set att = el Root. sel ect Si ngl eNode(" @all")

Now the GoldMine XML API call can be changed easily.
att. Text = "DB_Append"

Be sure to set all references to Nothing (or Null) before exiting your application!

Set el Root = Not hi ng
Set doc = Not hi ng
Set att = Not hi ng

Creating Child Elements

To specify parameters of the GoldMine XML API function calls, a “data” element
needs to be created for each parameter. Each data element has one attribute titled
“name”. The value of the parameter is stored as the text value of the attribute.
Following is a Visual Basic example showing a subroutine that sets a parameter for

the GoldMine XML API:

Publ i ¢ Sub Set Paraneter(doc As DOVDocunent 40, root As | XMLDOMVEI enent,
sParamNane As String, ByVal sValue As String)

Di mtenpEL As | XMLDOVEI enent

‘Create the elenment and assign to a reference
Set tenpEL = doc. creat eEl ement ("data")

‘Set the attribute with the sParamNane val ue bei ng the nane of the
‘par anet er

tenpEL. set Attribute "nane", sParanNane

183



Integrating With GoldMine

‘Specify the value of the paraneter
t enpEL. Text = sVal ue

‘Append the child elenent to the root
root. appendChil d tenpEL
Set tenpEL = Not hi ng

End Sub

The above subroutine can now be called to set many parameters for a function. The
example below assumes the document, root element and attribute objects created in

the previous section.

att.Text = "DB_Repl ace"

Set Par anet er doc, el Root, "Field", "Contact"
Set Par anet er doc, el Root, "Newval ue", "XM. Contact"
Set Par anet er doc, el Root, "Append", "O"

Executing the XML Document

The GoldMine XML API exposes a single method to execute the XML document:
ExecuteCommand. The following subroutine wraps the calls necessary to execute
the API's XML:

Publ i c Sub Execut eCommand(doc As DOvDocunent 40)
DimstrQut As String

D m GVAPI As GWXMLAPI . Gol dM neDat a

Set GVAPI = New GWXM.API . Gol dM neDat a
strQut = GVAPI . Execut eCommand( doc. xm )

‘xmout is a global string variable. This can be changed to be
‘returned by the function call.

xm out = strQut
Set GVAPI = Not hi ng

End Sub

184



Integrating With GoldMine

Reading the Results

The GoldMine XML API returns the results of the function calls by adding an
element called status with an attribute called “code”. In addition, data returned by
the call, such as contact information, is returned as child elements.

Reading the Code Attribute

After executing an XML API command, the resulting XML document contains a
status element with a code attribute. The value of this attribute represents the return
value of the function executed. The text value of the code attribute is a description of
the return value, typically providing a meaningful explanation of an error code. The
following subroutine returns the code as the return value and the textual description
as an optional output parameter:

Public Function Get ReturnVal (Optional sDescription As String) As Integer
Di m DonDoc As DOVDocunent 40
Set DonDoc = New DOvDocunent 40

‘xmout is a global variable that contains the returned XM. from
‘t he Execut eCommand subroutine defined in the above section

DonDoc. | oadXM. xnl out

Di mroot As | XMLDOVEl enment
Set root = DonDoc. docunent El ement
If root.Attributes.length > 0 Then
Di m status As | XM.DOWNode
Set status = root. chil dNodes(0)
If status.Attributes(0). baseNanme = "code" Then
sDescription = status. Text
Get ReturnVal = status. Attributes(0). Text
End |f
End If

Set DonDoc = Not hi ng

Set root = Not hing
Set status = Nothing

End Function

185



Integrating With GoldMine

Reading the Returned Data

The GoldMine XML API returns an element titled “Return” containing the data
elements returned by the executed command. The best way to access the individual
elements using MSXML is to call selectsingleNode and specify an XPath expression
to designate the desired element. SelectsingleNode returns a reference to the
element requested. To access a further-nested element, call selectsingleNode again
from the originally returned element. The following code loads an XML document
returned from executing the ReadRecord command. It then obtains a reference to
the “Return” element, followed by requesting the “CONTACT” element from the
“Return” element.

Di m el ReturnbDat a As | XM_DOVE!l enent

Di m el Fi el dval ue As | XM_LDOVE!l enent

Di m docRet urned As DOVDocument 40

Di m el Root Ret urned As | XM_LDOVEl enent

Set docReturned = New DOvDocunent 40

docRet urned. | oadXM. xnl Ret ur ned
Set el Root Ret urned = docRet ur ned. docunent El enent

Set el ReturnbData = el Root Ret urned. sel ect Si ngl eNode("dat a[ @ane=' Return']")
If Not el ReturnData |Is Nothing Then
Set el Fi el dVal ue = el ReturnDat a. sel ect Si ngl eNode( " dat a[ @ame=" CONTACT' | ")
If Not el Fieldvalue Is Nothing Then _
t xt Cont act Name = el Fi el dVal ue. Text
End If

Set el ReturnbData = Not hi ng
Set el Fi el dval ue = Not hi ng
Set el Root Ret urned = Not hi ng
Set docReturned = Not hing

The XPath expression is case sensitive. Typically, all field name elements will be in ALL
CAPS. Other element names may not be formatted in that manner. The case format of the
element name can be checked by inspecting the returned XML during the design phase of
your application.

186



Integrating With GoldMine

Accessing the Current GoldMine
Instance with COM

With the release of GoldMine 6.7, GoldMine acts as a COM Server. This new
functionality enables an application to interact with GoldMine without using DDE or
loading a dll. In addition, integrating your application with GoldMine using the
COM Server ability does not require a separate instance of Borland Database Engine
(BDE) to be loaded. Furthermore, utilization of the COM server in GoldMine allows
the integrating application to control GoldMine’s user interface to a much greater
extent than the legacy DDE server allowed.

Note: As of GoldMine Version 7.0, the Borland Database Engine is no longer used.
References to BDE in this chapter apply to integrations developed in
GoldMine Version 6.7.

All COM server class methods are executed via XML. For information on using
Microsoft XML for creating XML documents to use with the GoldMine COM Server,
please see “Using MSXML to Handle GoldMine API XML” on page 182.

There are 3 classes exposed by the COM server:

1. GoldMine.GoldMineData - This class has methods that are exactly as in the
GoldMine XML API described in Chapter 4, Working with the XML APL
However, this class does not contain any functions for loading BDE or logging in,
as they are unnecessary with a running instance of GoldMine. Using the
GoldMine.GoldMineData class of the COM Server will alleviate the
SharedMemLocation BDE setting issues with loading a second BDE instance.
Since these commands are an exact duplicate to the GoldMine XML API
commands, they will not be documented in this chapter. For information on

using the commands accepted in this class, please see Chapter 4, Working with
the XML API.

2. GoldMine.UI - This class has methods and events that replace all current DDE
functionality and to control the GoldMine user interface.

187



Integrating With GoldMine

3. GoldMine.RecObj - This class has events for notifying client applications of
Record object changes.

Getting Started

To access the GoldMine COM Server, add a reference to the GoldMine 6.7 Type
Library to your project. Objects for each of the classes can now be created.

Dm WthEvents GVUI As Gol dM ne. Ul
Dim WthEvents RcOb As Gol dM ne. RecObj
Di m GvDat a As Gol dM ne. Gol dM neDat a

In addition, your application needs to be COM Exception aware.

For instance if a login fails, then a COM Exception of type AccessDenied is passed to
your application.

Executing Commands

The GoldMine.UI and GoldMine.GoldMineData classes only have one exposed
method:

Execut eComand([i n] BSTR xm I n, [out, retval] BSTR* xnl Qut)

To use this method, build your XML document using a DOM parser, such as
MSXML, then pass the resulting document to the ExecuteCommand method.

strQut = GV . Execut eCommand(t xt XMLI n. Text)

If your application is developed in VB, C#, VB.NET, or Delphi the call will have the
same format as above.

StringVar = GMUI.ExecuteCommand(xmlIN)

If your application is developed in C++, or another lower-level programming
language, the call will have the format of:

ExecuteCommand(xmlin, xmlOut)

Logging In to GoldMine

Using the GoldMine COM Server requires that GoldMine is running on the
computer the client application is also running on. If GoldMine is not running, it
will be launched the first time a call is made to the GoldMine COM Server.
However, this will only bring GoldMine to the login screen. The GoldMine.UI and
GoldMine.GoldMineData classes both have a command to handle this, Login.
Following is example code for calling the Login command:

188



Integrating With GoldMine

GMbj . Execut eComand( " <GVAPI cal | =""Logi n""><dat a
name=""User"" >MASTER</ dat a><dat a nane=""Pass"" >ACCESS</ dat a></ GVAP| >")

If GoldMine is already running, the COM server will return:

<GWAPI cal |l ="Logi n">

<status code="-31703">The call passed was not recogni sed as
val i d. </ status>

</ GVAPI >

If the Login attempt was successful, the COM server will return:

<GWAPI call ="Login">
<status code="1">Succeeded. </ st at us>
</ GVAPI >

If invalid login information is passed, a COM Exception of type AccessDenied is
returned to the client application.

GoldMine.Ul Class

The Ul class of the GoldMine COM Server provides identical functionality to the
legacy DDE Server. If you are familiar with using the DDE commands, porting to
the COM Server will be natural. There is additional functionality in the COM Server
that allows control of the GoldMine user-interface with commands such as
launching menu items, being notified when a window is being launched, and
manipulating controls.

Accessing Data Files

GoldMine.UI provides a complete set of commands that allow low-level access to the
data files. These functions allow you to:

e Open particular data files,
e Query the values of the fields in the records in the data files,
e Add records to the files, and
e Replace data in the records.
This suite of functions is usually used for database applications that need varied

access to GoldMine data.

Adding an Empty Record

<GMAPI call="Append”>
<data name="Area”>1</data>

</IGMAPI>

Syntax

189



Integrating With GoldMine

The Append function is used to add an empty record to a GoldMine data file. Before
using Append, you must open a data file using the Open function. After executing
the Append function, the record pointer is positioned at the new empty record, and
the record is locked and ready to accept field replacements.

When a CONTACT1 record is appended, GoldMine automatically propagates the
new record with the appropriate ACCOUNTNO and CREATEBY values. For all
other records, you must replace the ACCOUNTNO field with the value from the
CONTACT1 record with which the new record is to be linked. For records that
require remote synchronization initialization, GoldMine will automatically
propagate the value of the RECID field when these records are appended.

Parameters

The Append function accepts one parameter, the work area handle of the file to
Append. The work area handle is returned by the Open file when the file is opened.

Return Value

Xbase: The Append function returns the record number of the new record, or 0 if the
file could not be locked.

SQL: The Append function returns the record ID.

RETURNED XML
<GWAPI cal | =" Append" >

<st atus code="1">72</ st at us>
</ GVAPI >

Closing an Opened File

<GMAPI call="Close”>
<data name="Area”> 1</data>

</GMAPI>

Syntax

The Close function is used to release a previously OPENed file when processing is
complete. When access is complete, a file must be CLOSEd to release memory used
by GoldMine to maintain database work areas.

PARAMETERS

The Close function accepts one parameter, Area—the work area handle of the file to
close. The Open file returns the work area handle when the file is opened.

RETURN VALUE

The Close value returns 1 if the function was able to successfully close the work area,
0 if an invalid work area handle was passed.

190



Integrating With GoldMine

RETURNED XML
<GMAPI call="Close"><status code="1">Success</status></ GMAPI>

Deleting the Current Record

<GMAPI call="Delete”>
<data name="Area”>1</data>

</GMAPI>

Syntax

The Delete function deletes the current record in the specified work area. The record
pointer is not advanced to the next record.

PARAMETERS

The Delete function takes one parameter, Area—the work area value obtained from
the Open function.

RETURNED XML
<GVAPI call ="Del ete">

<status code="1">Success</status>
</ GVAPI >

Creating a Subset of Records

<GMAPI call="Filter>
<data name="Area”>1</data>

Syntax <data name="Expression”>Xbase Expression</data>

</IGMAPI>

The Filter function limits access to data in a GoldMine database by creating a subset
of records based on expression criteria.

PARAMETERS
The Filter function takes two parameters.

Area: the work area handle of the file that you want to read. The Open function
provides this value when the data file is opened.

Expression: a valid Xbase expression. Referencing a table and field in an Xbase
expression requires the use of the “>" character. Since this is an XML entity, be sure
to build this XML document through a DOM parser to XML encode the elements.
See Using MSXML to Handle GoldMine API XML on page 182 for more information.

191



Integrating With GoldMine

To remove the filter from the database, use a Filter function with an empty string,
such as:

<GVAPI call="Filter”>

<dat a nane="Area”>1</dat a>

<dat a name="Expressi on”/>

</ GVAPI >

Checking for an Xbase or SQL Table

<GMAPI call="I1sSQL”>
<data name="Area”>1</data>

</GMAPI>

Syntax

The IsSQL function returns the table type (Xbase or SQL) that is open in a work area.
Using this command, you can determine the most appropriate method to retrieve
information when working with DataStream. For example, when your routine starts,
you can open Contactl and Cal, issue an IsSQL command to determine the GoldDir
and CommonDir database types, and then close both work areas. You can then send
the appropriate DataStream calls.

PARAMETERS
The IsSQL function takes work area as the only parameter, Area.

RETURN VALUES
IsSQL returns 1 for an SQL database table, or 0 for an Xbase file.

RETURNED XML

<GWAPI call="1sSql ">
<status code="0">The open file is xBase. </status>
</ GVAPI >

Moving to a Specified Record

<GMAPI call="Move”>
<data name="Area”> 87494472</data>

Syntax <data name="Command”>COMMAND</data>
<data name="Parameter’”>PARAMETER</data>
</GMAPI>

The Move function will position the record pointer to a particular record in a data
file. Before using Move, you must open a data file using the Open function.

192



Integrating With GoldMine

PARAMETERS

The Move function requires either two or three parameters.

Area: the work area handle of the file whose record pointer you want to position.
The Open function provides this value when the data file is opened.

Command: the name of the Move subfunction that you want to perform.

Parameter: Depending on the subfunction, a third parameter can be required.
The following table lists the Move subfunctions and the requirements for the third

parameter:

Valid Move Subfunctions

Subfunction Description 3rd Parameter

TOP Move to first logical record Not required

BOTTOM Move to last logical record Not required

SKIP Skip records Optional, records to skip

GOTO Go to a specific record Record number (Xbase), Record ID (SQL)

SEEK Seek a specific record by key | Search key value

SETORDER Select an index Index name

Top Positions the record pointer at the first logical record according to the current index
order. For example, if the data file open in the selected work area is CONTACT1.DBF,
and the index order is set to Company, a call to TOP will result in the record pointer
being positioned at a record with a company name, such as AAA Cleaners.

Bottom Positions the record pointer at the last logical record according to the current index
order. For example, if the data file open in the selected work area is CONTACT1.DBF,
and the index order is set to Company, a call to BOTTOM will result in the record
pointer being positioned at a record with a company name, such as Z-best Bakery.

Skip Moves the record pointer record by record. If SKIP is called without the third
parameter, it will move the record pointer to the next logical record according to the
current index order. If SKIP is called with a string numeric as the third parameter, the
record pointer will be moved forward by the indicated number if the value is positive, or
backward if the value is negative. Negative numbers must be passed in quotation
marks, for example “-1”.

Goto Positions the record pointer at the record number (Xbase) or record ID (SQL) specified
by a string numeric passed as the third parameter.

Seek Attempts to locate a record in the data file with an index key that matches the string
passed as the third parameter. Partial key searches are allowed; GoldMine will
position the record pointer at the record with the key that most closely matches the
passed value.

Setorder Selects an active index for ordering and SEEKing the data file. See “Database

Structures” on page 383 for the appropriate values and collating sequence for each
data file index.

193




Integrating With GoldMine

(\F If an invalid index is selected for the data file, none of the MOVE subfunctions will
operate properly.

RETURN VALUE
The Move function can return several values.

Move Return Values

Return Description

0 Error occurred

1 Record pointer successfully moved, or index selected

2 Exact match not found, pointer positioned at closest match
3 Record pointer positioned at end-of-file (EOF)

4 Record pointer positioned at beginning-of-file (BOF)

An error can be returned under any of the following conditions:
e Invalid work area handle is passed to the function.
e Invalid subfunction is passed.
e Out-of-range record number is passed.

¢ Nonnumeric value is passed as a third parameter when a
numeric value is expected.

RETURNED XML
<GVAPI cal | =" MOVE" >

<status code="1">1</stat us>
</ GVAPI >

Opening a Data File

<GMAPI call="Open”>
Syntax <data name="Filename”>CONTACT1</data>
</GMAPI>

The Open function is used to open a GoldMine data file for processing by another
application. This function must be called before calling any GoldMine.UI data
functions that work with an individual data file. It is not necessary to use this
function when calling the RecordObj function or user-interface control functions.

194



Integrating With GoldMine

PARAMETERS

The Open function takes one parameter, Filename. The following values are valid for

this parameter:

Open Valid Parameters

File Description

CAL Calendar activities file
CONTACT1 Primary contact information file
CONTACT2 Primary contact information file
CONTGRPS Groups file

CONTHIST History records file
CONTSUPP Supplementary records file
INFOMINE InfoCenter file

LOOKUP Lookup file

MAILBOX E-mail Center mailbox file
OPMGR Opportunity Manager file
PERPHONE Personal Rolodex file
RESOURCE Resources file

SPFILES Contact files directory

RETURN VALUE

The Open function returns an integer value representing the handle to the file’s work
area. This value is required for all subsequent access to the file. If the file could not
be opened, or an invalid parameter is passed, the function will

return 0.

RETURNED XML

<GMAPI call="Open"><status code="1">87732928</status></ GMAPI>

Limiting GoldMine Search Range

Syntax

<GMAPI call="Range">
<data name="Area">87732928</data>
<data name="Min">Mark Durrant</data>
<data name="Max">Paul Redstone</data>
<data name="Tag">CONTNAME</data>
</GMAPI>

The Range function activates the index in a table and sets a range of values to limit
the scope of data that GoldMine will search.

PARAMETERS

The Range function requires four parameters.

195




Integrating With GoldMine

Area: the work area handle of the file that you want to read. The Open function
provides this value when the data file is opened.

Min: the minimum value of the range.
Max: the maximum value of the range.

Tag: the tag that corresponds to the index file. For details about tags, see “Database
Structures” on page 383.

RETURNED XML
<GWAPI cal | =" Range" >

<status code="1">Success</ st at us>
</ GVAPI >

<GMAPI call="Query">
<data name="Area">87732928</data>
<data name="SQL">select recid from contactl where state="MI’</data>
</GMAPI>

Syntax

The Query function limits the set of records that can be accessed to the result set
from the specified SQL query. After calling the Query command, issue a MOVE
command to move the record pointer into the result set from the Query (by calling
TOP for example).

PARAMETERS
Area: the area value returned by the Open command.

SQL: the SQL query to send to the server.

RETURNED XML
<GWAPI cal | =" Query"><status code="1">Success</ st at us></ GVAPI| >

Reading a Field Value

<GMAPI call="Read">
<data name="Area">87624560</data>
<data name="Field">Keyl</data>
</GMAPI>

Syntax

The Read function is used to query a data file for the value of a field. Before using
Read, you must open a data file using the Open function. In addition, you will
probably want to position the record pointer to the record you want to query by
using the Move function.

196



Integrating With GoldMine

PARAMETERS
The Read function requires two parameters.

Area: The first parameter is the work area handle of the file that you want to read.
The Open function provides this value when the data file is opened.

Field: The second parameter is the name of the field in the data file whose value you
want to query. You will normally pass only a single field name, such as CONTACT
as the second parameter. However, if you pass a field expression, such as
“COMPANY + CONTACT” GoldMine will attempt to evaluate the expression and
return the value of the expression.

RETURN VALUE

The Read function returns a character string containing the value in the specified
field, or the value of the specified expression. An invalid work area handle, an
invalid field being passed, or an expression that GoldMine could not evaluate can
cause errors.

RETURNED XML
<GWAPI call ="Read">

<status code="1">Client Prospect</status>
</ GVAP| >

Checking the Current Record Number or Record ID

<GMAPI call="Recno">
Syntax <data name="Area">87624560</data>
</GMAPI>

Xbase: RecNo function is used to determine current record number position.

SQL: RecNo function is used to determine the record ID.

PARAMETERS

The RecNo function accepts one parameter, Area—the work area handle of the file.
The Open function returns the workarea.

RETURN VALUE

The RecNo function returns the current record number position, 0 if an invalid work
area handle was passed.

RETURNED XML
<@WAPI cal |l ="Recno" >

<st atus code="1">21</st at us>
</ GVAPI >

197



Integrating With GoldMine

Changing a Field Value

<GMAPI call="Replace">
<data name="Area">87637440</data>
<data name="Field">contact</data>
<data name="NewValue">Reuben Corazza</data>
<data name="Append">0</data>
</GMAPI>

Syntax

The Replace function is used to change the value in a particular field in one
GoldMine data file. Before using Replace, you must open a data file using the Open
function. In addition, you will probably want to position the record pointer to the
record you want to change either by using the Move function, or by adding a new
record with the Append function.

After executing the Replace function, GoldMine will update the specified field with
the new value, and update the appropriate remote synchronization data structures
to indicate that the field was changed.

In a network environment, GoldMine automatically locks the record before
performing the replacement. The record is not automatically unlocked, allowing for
fast multiple field replacements. The record is automatically unlocked when a Close,
Move, or Unlock command is issued on the work area.

PARAMETERS

The Replace function requires three parameters and has an optional fourth
parameter.

Area: The first parameter is the work area handle of the file in which you want to
perform the replacement. The Open function provides this value when the data file
is opened.

Field: The second parameter is the name of the field to be replaced. See “Database
Structures” on page 383 for information on the name of fields in each GoldMine data
files. If you attempt to replace a field that does not exist in the file open in the
specified work area, the Replace function will fail.

NewValue: The third parameter is the value to replace. The replace value must be a
string value. If the replacement field is a date or numeric field, GoldMine will
convert the string data to the appropriate data type prior to performing the
replacement.

Append: The fourth parameter will add data instead of replacing data. Using this
parameter, you can insert large amount of text into a notes field. To append instead
of replace incoming data from the third parameter, pass 1 as the fourth parameter.
You can set up a loop to feed notes in 256-byte segments to override the 256-byte
limit for inbound DDE requests.

RETURN VALUE
If the file was replaced, the Replace function returns 1.

<GWAPI cal | ="Repl ace"><st at us code="1">Success</ st at us></ GVAP| >

198



Integrating With GoldMine

If the field could not be replaced, 0 is returned. The failure can be caused under any
of the following conditions:

e Invalid parameter, such as an invalid work area handle.
e Invalid field name.

e Record already locked by another user.

Performing a Sequential Search

<GMAPI call="search">

<data name="area">87675752</data>

<data name="expression">contact="Paul Redstone"</data>
</GMAPI>

Syntax

The Search function is used to perform a sequential search on a file. Unlike Move,
Search scans the table, one record at a time, looking for a record that satisfies the
search condition. The search condition can be any Xbase expression that GoldMine
understands, but is usually an expression that tests the value of one or more fields in
the file. When a match is found, the record pointer is located at the matching record.

Search starts with the record that immediately follows the current record (the next
logical record according to the selected index order) and continues until a match is
found or the end of file is encountered. Because of this, Search can be called
repeatedly to return a list of records that satisfy the search condition.

PARAMETERS
The Search function takes three parameters.

Area: the work area handle of the file you want to search. The Open function
provides this value when the data file is opened.

Expression: the search expression, such as “CITY="Los Angeles"”

RETURN VALUE
The Search function can return several values.

Search Return Values

Return Description

0 Error occurred or match could not be found

>0 Match found; return value indicated current physical record number (Xbase)
or record ID (SQL)

An error can be returned if an invalid work area handle is passed to the function, or
if an invalid search condition is passed.

RETURNED XML

<GVAPI call ="search">
<status code="1">1</stat us>
</ GVAPI >

199



Integrating With GoldMine

Unlocking a Record

<GMAPI call="Unlock">
Syntax <data name="Area">87675752</data>
</GMAPI>

The Unlock function unlocks a record previously locked by a call to either Append
or Replace. GoldMine does not specifically release a lock on a record until you call
Unlock, allowing you to perform multiple field replacements quickly. Before using
Unlock, you must open a data file using the Open function.

After calling Unlock, GoldMine will also update the remote synchronization data
structures to indicate the date and time that the record was modified.

PARAMETERS

The Unlock function accepts one parameter, Area—the work area handle of the file
to close. The work area handle is returned by the Open file when the file is opened.

RETURN VALUE

The Unlock function returns 1 if the record was unlocked, or 0 if an invalid work
area handle was passed to the function.

RETURNED XML
<@WAPI cal |l ="Unl ock">

<status code="1">Success</ st at us>
</ GVAPI >

Accessing Contact Records

For specific applications that need access to the GoldMine contact database at the
logical level, the RecordObj function is the preferred access method. Unlike the low-
level GoldMine.UI functions, the RecordObj function maintains all of the
relationships between the various GoldMine files. This access method is most often
used for document merging functions such as word processor mail merges or
placing information into a spreadsheet.

Linking GoldMine Fields with an External Application

<GMAPI call="RecordObj">
<data name="Command">skip</data>
<data name="Argument">3</data>
</GMAPI>

Syntax

The RecordObj function is a specialized function designed to link fields in a
document application, such as a word processor or spreadsheet. Using RecordObj,
an application can access the contact record in a high-level fashion, rather than
opening the CONTACT1.DBF and CONTACT2.DBEF files using Open.

200



Integrating With GoldMine

Calling RecordObj within a program is equivalent to viewing and manipulating the
contact record within GoldMine. The calling program can control the record pointer
in the contact record much the same way a GoldMine user can move the record
pointer. In fact, RecordObj can be called in such a way as to create a minimized
contact record in the GoldMine work area display.

The primary differences between using Open, Move, and Read to access contact
information and using RecordObj are described in the following table.

Differences in Accessing Contact Information

Using Open, Move, Read

Using RecordObj

Any filter or group that is active on a contact
record in GoldMine is ignored when files are
accessed using Open and Move

RecordObj can work in conjunction with a filter or
group. Any records that do not match the filter
expression, or are not members of the group, are
skipped

The only way to maintain the relationship
between the CONTACT1 and CONTACT2
files, is to manually reposition CONTACT2
whenever the record pointer is moved in
CONTACT1.DBF.

Automatically maintains the relationship between
CONTACT1 and CONTACT2 , and other contact
information such as history.

RecordObj does not contain a method to read
specific fields from the database. It is expected that
the application will use the Macro or Expr functions
to query information from the current contact
record, and use RecordObj function calls only to
position the record pointer.

When RecordObj is used to move the record
pointer, the contact record screen in GoldMine is
updated. To receive notification that the screen
has changed, use the GoldMine.RecordObj class
to receive events notifying of a record change, a
tab clicked, or a contactl or contact2 field being
changed.

PARAMETERS

The RecordObj function requires either one or two parameters.

Command: the name of the RecordObj subfunction that you want to perform.

Argument: Depending on the subfunction, a second parameter can be required. The
following table lists the RecordObj subfunctions and the requirements of the second

parameter.

Valid RecordObj Functions

Subfunction Description Argument
SETOBJECT Create or select contact record Optional object pointer
TOP Move to first logical record Not required
BOTTOM Move to last logical record Not required

SKIP Skip records Optional, recs to skip
SEEK Seek a specific record by key Search key value

201




Integrating With GoldMine

Subfunction Description Argument
SETORDER Select an index Index tag number
GETORDER Return the currently active index Not required
name
SETTITLE Set the contact record title Text of title
CLOSEWINDOW Close the contact record None
SETRECORD Change the behavior of SKIP, TOP, | Name of data structure to be queried
and bottom
REFRESH Repaint the contact record Not required
GETRP Return the point to the current Not required
contact record (Xbase) or the record
ID (SQL)

GETFILTEREXPR

Get the activated filter's expression | Not required

GETGROUPNO

Get the GroupNo of the activated Not required
group

GOTO

Seeks a specific record by The ReclID to seek

RecordID Additionally, accepts a third optional
parameter, SetPrimary, indicating if
only primary contacts should be
searched (1) or (0) to include
additional contacts in the search
scope.

Setobject

Top

Bottom

If SetObject is called without a second parameter, subsequent calls to
RecordObj will manipulate the currently active contact record. If SetObject is
called with a second parameter of 0, GoldMine will create a minimized contact
record in the work area display, and subsequent calls to RecordObj will
manipulate that contact record. If SetObject is called with a second parameter
of 1, GoldMine will create a minimized contact record in the work area display
and copy any filter or group active on the last used contact record into the newly
minimized contact record.

If RecordObj is called with a specific pointer number, GoldMine will attempt to
establish a link with that contact record.

Positions the record pointer at the first logical record according to the current
index order. For example, if the contact record index order is set to Company,
a call to Top will result in the record pointer being positioned at a record with a
company name such as “AAA Cleaners.” GoldMine will also update the contact
record to display the new record.

Positions the record pointer at the last logical record according to the current
index order. For example, if the contact record index order is set to Company,
a call to Bottom will result in the record pointer being positioned at a record with
a company name such as “Z-best Bakery.” GoldMine will also display the new
record.

202




Integrating With GoldMine

Skip

Goto

Seek

Setorder

Getorder

Settitle

Closewindow

The Skip subfunction moves the record pointer on a record-by-record basis.

If Skip is called without the second parameter, it will move the record pointer to
the next logical record according to the current index order.

If Skip is called with a string numeric as the second parameter, the record
pointer will be moved forward by the indicated number of records if the value is
positive, or backwards if the value is negative. GoldMine will also update the
display to show the new record.

The Skip subfunction is sensitive to any filter or group that can be active on the
contact record in GoldMine. For example, if the user applies a filter to the
contact record in GoldMine, the Skip subfunction will skip over any records that
do not match the filter expression.

The Goto subfunction positions the record pointer at the record number
specified by a string numeric passed as the second parameter. Additionally,
accepts a third optional parameter, SetPrimary, indicating if only primary
contacts should be searched (1) or (0 - default) to include additional contacts in
the search scope.

<GMAPI call="RecordObj">
<data name="Command">skip</data>
<data name="Argument">3</data>
<data name="SetPrimary”>1</data>

</GMAPI>

Attempts to locate a record in the data file with an index key that matches the
string passed as the second parameter. Partial key searches are allowed, and
GoldMine will position the record pointer at the record with the key that most
closely matches the passed value. GoldMine will update the display to show the
new record.

Selects an active index for ordering and SEEKing the contact database. Only
the twelve CONTACT1 indexes can be used for this subfunction. See
“Database Structures” on page 383 for the appropriate values and collating
sequence for each data file’s indexes.

Returns the active index being used to sort the contact records. See “Database
Structures” on page 383 for the appropriate values and collating sequence for
each data file’s indexes.

Changes both the text in the title bar of the contact record’s window and the text
displayed below a minimized contact record. For example, an application that
merges contact records within a document can modify the contact record title to
indicate the number of records that have been merged. Any text that is passed
as the second parameter will be used as the new title’s text.

Closes the contact record when processing is complete. Issuing this call is
equivalent to selecting Close from the contact record’s system menu.

203



Integrating With GoldMine

Setrecord Changes the behavior of the Skip, Top, and Bottom subfunctions to allow
ancillary contact information (such as additional contacts) to be queried using
the RecordObj function. Normally, GoldMine assumes the CONTACT1 data file
to be the parent data file, and when the Skip, Top, or Bottom subfunction is
called, the record pointer is repositioned in this data file. When accessing
information in GoldMine tabs, however, the Skip, Top, and Bottom subfunctions
must be able to reposition the record pointer in the data file that stores these
items (CONTSUPP).

The SetRecord subfunction accepts the name of the data structure being
queried as the second parameter. Valid data structure names are listed in the
following table.

Data Structure | Description
Name

CONTACTS Additional contacts
PROFILE Profile records
REFERRALS Referral records
LINKS Linked documents
PRIMARY Primary contacts

Setrecord Valid Structure Names
Using SetRecord changes the behavior of the Skip, Top, and Bottom
subfunctions.

The first parameter is the name of the RecordObj subfunction that you want to
perform. When Top is called, GoldMine will position the record pointer in the
supplementary data file so that the first record containing the selected
information is the current record. For example, if SetRecord is used to select
CONTACTS, Top will position the record pointer on the first additional contact
record for the current contact. The record pointer in the primary information data
file (CONTACT1) will not be moved, so the name of the current company will
remain the same. Bottom behaves in a similar manner.

Skip will position the record pointer in the supplementary file on the next
record of the selected type. For example, if SetRecord is used to select
CONTACTS, Skip will position the record pointer in the supplementary file on
the next additional contact record for the current contact. The record pointer in
the primary information data file (CONTACT1) will not be moved, unless the
record pointer in the supplementary file was already positioned at the last
record of the selected type; then GoldMine will reposition the record pointer in
the primary information data file (CONTACT1) to the next contact record and
reset the record pointer in the supplementary file to the first supplemental
record of the selected type. Macro expressions are also sensitive to the setting
of the SetRecord subfunction.

Refresh Repaints the contact record
GetRP Obtains a pointer of the currently selected contact record
GetGroupNo Returns the group number (if a group is activated)

GetFilterExpr Returns the filter expression (if a filter is activated)

204



Integrating With GoldMine

RETURN VALUE

All RecordObj subfunctions return 1 if the function was completed successfully, or 0
if an internal error occurred.

RETURNED XML
<GWAPI cal | ="Recordnj ">

<status code="1">Ski p Success</status>
</ GVAPI >

Accessing Specialized GoldMine.Ul Functions

GoldMine provides a set of specialized functions for performing specific tasks, such
as retrieving a list of plug-ins, adding document links to the contact database, or
sending GoldMine a CallerID message.

Retrieving a List of Active Plug-Ins (GoldMine 7.0 or higher)

Syntax <GMAPI call="GetActivatedPlugins"/>

The GetActivatedPluglns function is used to retrieve a list of active (trusted) plug-ins
for the current user’s session. For more information about GoldMine Plug-ins, see
the Working with GoldMine Plug-ins chapter.

Each Plugln node in the list is an encoded representation of the item. These are
dynamically created and will not be the same starting number on individual
systems. For example, 3013__ GMAIL may be 3001__GMAIL on another system. The
text after the number will be the same.

Each plug-in list item contains the following information:
XXXX__I nternal Nane__Met hodMenuEnt ry

RETURNED XML
<GWAPI cal | =" Get Acti vat edPl ugl ns" >

<status code="1">Success</status>

<dat a nanme="Pl ugl nLi st">
<dat a name="Pl ugl n">3007__Fr ont RangeCTest Cont r ol </ dat a>
<dat a name="Pl ugl n">3002__Fr ont RangeQut | ookWebAccess</ dat a>

<dat a
name=" Pl ugl n" >3250__Fr ont RangeMovi eVi ewer 10__LaunchMovi eVi ewer 10</ dat a>
<dat a
name="Pl ugl n">3251__Front RangeMovi eVi ewer 10__ Confi gur eMovi eVi ewer 10</ da
ta>

<dat a name="Pl ugl n">3001__Fr ont RangeTest Cal endar </ dat a>
<dat a name="Pl ugl n">3003__Fr ont RangeHel pAbout </ dat a>
<dat a name="Pl ugl n">3008__GanesKi tt enGane</ dat a>

<dat a nanme="Pl ugl n">3013__GWAI L</ dat a>

<dat a nanme="Pl ugl n">3005__ Googl eGoogl eMaps</ dat a>

<dat a name="Pl ugl n">3000__JCSFI ashandGWi aVBNET</ dat a>

205



Integrating With GoldMine

<dat a name="Pl ugl n">3009__JCSO f i ceDocunent </ dat a>
<dat a name="Pl ugl n">3004__Sol uti onSel | i ngSol uti onSel | i ng</ dat a>
</ dat a>
</ GVAP| >

Running a Plug-In (GoldMine 7.0 or higher)

<GMAPI call="RunPlugIn">3013__GMAIL</GMAPI>
Or

<GMAPI call="RunPlugin">3013</GMAPI>

Or

<GMAPI call="RunPlugIn">

<data name="PlugIin”>3013__GMAIL</data>
</GMAPI>

Syntax

Or

<GMAPI call="RunPlugin">
<data name="PlugIn”>3013</data>
</GMAPI>

The RunPlugln function attempts to start the designated plug-in. For more
information about GoldMine Plug-ins, see the Working with GoldMine Plug-ins
chapter.

RETURNED XML
<GWAPI cal | =" RunPl ugl n" >

<status code="1">The plug-in call was successful.</status>
</ GVAPI >
Or

<GWAPI cal | =" RunPl ugl n">
<status code="0"> The Plug-in ID is invalid</status>
</ GVAPI >

Retrieving Login Credentials for Use with the GMXS32.DLL

Syntax <GMAPI call="GetLoginCredentials"/>

The GetLoginCredentials function is used to retrieve a string containing login
credentials to be used for logging into the GMXS32.DLL through the
GMW_LoadAPI, GMW_LoadBDE or GMW_Login functions. Using this option, it is
not necessary to prompt the integration user for login information if GoldMine is
running. The login credentials received are only valid for 30 seconds, so do not store

206



Integrating With GoldMine

them and attempt to use them at a later time. The string returned by this command
should be used as the password to the appropriate login function, where the
username is “*DDE_LOGIN_CREDENTIALS*”.

RETURNED XML
<GVAPI

cal | =" Get Logi nCredenti al s">

<status code="1">KEVI N
01CAD24F7051B9B04F882C36294F1F4AB4E4D20FCF3C1682</ st at us>

</ GVAPI >

Retrieving the ReclD of the Current Opportunity

Syntax

<GMAPI call="GetActiveOppty"/>

The GetActiveOppty function is used to retrieve the RecID of the currently selected
Opportunity in the Opportunity Manager.

RETURN VALUE

The GetActiveOppty function returns the record ID of the currently selected
opportunity. If no opportunity is available, an empty string is returned.

207




Integrating With GoldMine

RETURNED XML
No opportunity or project selected in GoldMine:
<GWAPI cal |l ="Get ActiveQppty">

<status code="1"></status>
</ GVAPI >

An opportunity or project is selected in GoldMine:

<GWAPI cal |l ="Get Acti veQppty">
<status code="1">A0A73CUY/ HD3\ T</ st at us>
</ GVAPI >

Completing a Calendar Activity

<GMAPI call="CalComplete">
<data name="Recno">ASSAG6C(+.E%3\T</data>
<data name="Activity">BlL</data>
<data name="Ref">Called Angel re Support</data>
Syntax <data name="ResultCode">DON</data>
<data name="Notes">Agreed on terms</data>
<data name="User">KEVIN</data>
<data name="RetainDate”>1</data>
</GMAPI>

The CalComplete function is used to complete an activity from the Calendar.
PARAMETERS

The CalComplete function takes up to seven parameters.

Recno: the record number of the calendar activity to be completed.

Activity: the Activity Code. This parameter is optional.

ResultCode: the Result Code. This parameter is optional.

User: the User. If this parameter is not specified, the User field defaults to the
currently logged user.

Ref: the history Reference. This parameter is optional.
Notes: the Notes for the history record. This parameter is optional.

RetainDate: a Boolean (1=true, 0= false) that if true, retains the original date of the
calendar entry, otherwise uses today. Defaults to 0, false.

RETURN VALUE

The CalComplete function returns the record number (Xbase) or record ID (SQL) of
the new history record created.

RETURNED XML
<GWAPI cal |l ="Cal Conpl et e" >

<st atus code="1">1980</ st at us>
</ GVAPI >

208



Integrating With GoldMine

Displaying Edit Windows for Calendar and History Iltems

<GMAPI call="PopCalHistltem">
Syntax <data name="recID”>BNPKDFZ$OF9-|WV</data>
</GMAPI>

Use the PopCalHistltem function to display the edit window for calendar or history
items, including email. When you pass it a valid cal table or conthist recID, the
correct edit window will open.

The Calendar Item edit window is a modal dialog: the return value will not be sent
until the user closes the edit window.

For history items, the record object will align to the owner of the history
automatically. This will not occur for calendar items.

GENERAL MESSAGES

<GWAPI cal | ="PopCal Hi stltem ><status code="-33001">
PopCal Item has fail ed because the passed record coul d not be found.
</ st at us></ GVAPI >

<GWAPI cal | =" PopCal Hi stlten ><status code="-33002">
PopCal I t em opens a cal endar or contact history record for editing.

Par anet er s

Recl D: the record id of the cal or conthist table entry.
</ st at us></ GVAP| >

RETURN VALUES

Calendar Iltem Return Values

<GWAPI cal | ="PopCal Hi stltem ><status code="0">User pressed cancel
but t on. </ st at us></ GVAPI >

<GWAPI cal | ="PopCal Hi stlten><status code="1">User pressed K
but t on. </ st at us></ GVAPI >

History Item Return Values
<GWVAPI cal | =" PopCal Hi stlten ><status code="0">Fai | ure</ st at us></ GVAPI >
<GWVAPI cal | =" PopCal Hi stlten ><status code="1">Success</ st at us></ GVAPI >
Email ltem Return Values
<GWAPI cal | ="PopCal Hi stltem ><status code="0">Fai | ur e</ st at us></ GVAPI >
<GWVAPI cal | =" PopCal Hi stlten ><status code="1">Success</ st at us></ GVAPI >

<GVAPI cal | ="PopCal Hi stltenf><status code="1">Al r eady
Open</ st at us></ GVAPI >

Displaying the Contact Record of an Incoming Caller

<GMAPI call="CallerID">

<data name="Phone">(800)776-7889</data>

<data name="Description">Incoming caller:</data>
Syntax <data name="DisplayDialog" >6</data>

<data name="All">1</data>

<data name="UPhone”>1</data>
</GMAPI>

209



Integrating With GoldMine

The CallerID function is used to inform the GoldMine user that an incoming call has
been identified by Automatic Number Identification (ANI) equipment attached to
the telephone system. By using CallerID, GoldMine can perform a lookup on the
contact database, and attempt to locate a contact record with a telephone number
that matches the telephone number extracted by the ANI device.

With the CallerID function, GoldMine can automatically display the contact record of
the caller. A dialog box is displayed, allowing the user to select an action. A CallerID
function parameter is used to specify the message in the dialog box.

PARAMETERS

The CallerID function accepts five parameters:

Phone: the telephone number of the caller as captured by the ANI device. The
calling application is responsible for formatting the telephone number that appears
in the Phonel field in GoldMine.

Description: the optional message to be displayed in the dialog box in GoldMine.

All: Indicates for GoldMine to search all of the phone fields on the contact record
(except FAX). Set to 1 to search all phone fields, 0 to indicate to search only Phonel.

UPhone: Indicates for GoldMine to search the UPhone fields in contact2. This
parameter is ignored if the All parameter is set to 0.

DisplayDialog: specifies whether the dialog box is displayed. This parameter is the
sum of the required options. For example, to display the caller’s contact record in the
current window if the record is found, or to display the contact listing if the caller’s
phone number is not found, specify 6 (2+4) as the <display dialog> parameter. The
following table lists valid parameter values.

CallerID Parameters

Value Description

0 Dialog box is displayed (default when third parameter is not passed)

1 Dialog box is not displayed, and contact record is displayed in a new contact record

2 Dialog box is not displayed, and contact record is displayed in the current contact record

4 Contact Listing is displayed when GoldMine cannot find the contact’s telephone number.
To activate this option, add this value to the third parameter value.

8 Restores input focus to the window that had input focus just before CALLERID is
called—used by applications that control the entire interface.

RETURN VALUES

CallerID Return Values

Return Description

0 Error occurred

1 Contact record found

2 Contact record not found

210




Integrating With GoldMine

RETURNED XML
<GWAPI call="CallerlD">

<status code="1">Passed cal |l er was found</status>
</ GVAPI >

Running a Counter

<GMAPI call="F2Counter">
<data name="Name">My counter</data>
<data name="Inc">1</data>
<data name="Start">0</data>
<data name="Action">0</data>
</GMAPI>

Syntax

The F2Counter function returns a sequence of consecutive numbers each time the
expression is evaluated. The DDE equivalent to this function was called “Counter”.

PARAMETERS

The counter name must be unique, and can be a maximum of 10 characters. Each
evaluation of the Counter function increments the counter by the Inc value.

The Start and Action parameters are optional. When Action is 1, the start value resets
the counter. When Action is 2, the counter is deleted. F2Counter stores the count
value between GoldMine sessions, and it is shared by all GoldMine users.

GoldMine can track an unlimited number of uniquely named counters. The counter
values are stored in the LOOKUP table.

RETURN VALUE
The F2Counter function returns a number incremented by Inc.

EXAMPLE
The following sets up the counter:
<GVAPI cal |l ="F2Counter">
<dat a nanme="Nanme">Num | t er ati ons</ dat a>
<dat a name="Inc">1</ dat a>
<data nanme="Start">0</ dat a>
<dat a nanme="Acti on">0</ dat a>
</ GVAPI >

Returns:

<@WAPI cal | ="F2Counter">
<st at us code="1">0</ st at us>
</ GVAPI >

To increment the “Num Iterations” counter:

<GVAPI call ="F2Counter">
<dat a nanme="Nane">Num | t er ati ons</ dat a>

211



Integrating With GoldMine

<dat a nane="I ncl ude" >1</ dat a>

</ GVAPI >

Returns:

<GVAPI call ="F2Counter">
<status code="1">1</stat us>

</ GVAPI >

Returning GoldMine Record Data

Syntax
<GMAPI call="DataStream”>
<data name="Command”>Range</data>
<data name="Table”>Contactl</data>
<data name="Tag”>CONTNAME</data>
Range <data name="BotLimit”>A</data>
<data name="TopLimit’>ZZ</data>
<data name="Fields”>contact;company</data>
<data name="Filter”>EXPRESSION</data><! -=NOT REQUIRED- >
</IGMAPI>
<GMAPI call="DataStream”>
<data name="Command”>Query</data>
Query <data name="SQL”>select recid from contactl</data>
<data name="Filter”>EXPRESSION</data><! -=NOT REQUIRED- >
</GMAPI>
<GMAPI call="DataStream”>
<data name="Command”>Fetch</data>
<data name="Area”>1</data>
<data name="FetchCount”>55</data>
Fetch <data name="Raw”>0</data><! -NOT REQUIRED- >
<data name="FieldDelimiter”>|</data><! -NOT REQUIRED- >
<data name="RowDelimiter”>\-/</data><! -NOT REQUIRED- >
</IGMAPI>
<GMAPI call="DataStream”>
<data name="Command”>Close</data>
Close <data name="Area”>1</data>
</GMAPI>

DataStream returns the data of requested records from any GoldMine table using the
most efficient method possible. The caller can specify the fields and expressions to
return, as well as the range of records to return. A filter can optionally be applied to

the data set.

212




Integrating With GoldMine

The DataStream method allows for many useful applications. One example would be
to publish the contents of GoldMine data on the Internet by using XSL templates
with the data returned by DataStream. Web pages can be created to display GoldMine
data requested by a visitor. Based on the visitor’s selections, a company could
dynamically present a variety of HTML pages, such as:

e Addresses of product dealers in a particular city
¢ Financial numbers stored in Contact2
e Seating availability of upcoming conferences

With a fast Internet connection and a strong SQL server, the GoldMine client could
simultaneously respond to dozens of requests.

RECORD SELECTION

The DataStream command consists of four subcommands. Each subcommand takes
different parameters.

The “range” or “query” subcommands must be called first to request the data. The
“range” and “query” subcommands return an integer handle, which must be passed
to the “fetch” and “close” subcommands. You must use either “range” or “query” —
not both.

DATASTREAM RANGE PARAMETERS

The Table, Tag, TopLimit, and BotLimit parameters determine the range of records
to scan. The Fields parameter specifies the requested fields and expression to return.

The Field parameter passed to the “range” subcommand should consist of the field
names and Xbase expressions to evaluate against each record in the data set. Each
field must be terminated with the semicolon (;) character. Xbase expressions must be
prefixed with the ampersand (&) character and terminated with a semicolon.

The other “range” parameters are optional.

DATASTREAM QUERY PARAMETERS
The “query” subcommand sends the SQL query for evaluation on the server.

The SQL query can join multiple tables and return any number of fields. The
optional Filter parameter can specify a Boolean Xbase filter expression to apply to
the data set (even on SQL tables).

DATASTREAM FETCH PARAMETERS

The “fetch” subcommand returns a single packet string that contains the requested
data from all records processed by the current “fetch” command, as specified by the
second Records parameter. Optionally, Fetch can return the requested data
formatted in XML, making it easy to retrieve specific data without having to parse a
large string. To receive the Fetch results formatted for XML, set the “Raw”
parameter to 0. Area must be the value returned from “range” or “query.” The
“fetch” command can be issued multiple times. The optional FieldDelimiter and
RowDelimiter can override the return packet’s default field and record delimiters of

213



Integrating With GoldMine

CR and LF. These parameters are not used when retrieving the return packet in
XML format. See “Return Packet” below.

DATASTREAM CLOSE PARAMETERS

The “close” subcommand must be called when the operation is complete. Unclosed
data streams will leak memory and leave the database connections needlessly open.
Passing an Area of 0 closes all open DataStream objects.

THE XML RETURN PACKET

DS_Fetch has an option in the GoldMine XML API to return the data in an XML
format that is easier to process than the traditional datastream return packet.
Consider the following DS_Query XML call:

<GWAPI cal |l ="DS_Query" SessionlD="1">

<dat a name="SQ.">sel ect contact, conpany, keyl from contactl where
cont act =" Raf ael Zi nber of f ' </ dat a>

<data nanme="Filter"/>
</ GVAPI >

Returns:
<GVAPI Sessionl D="1" cal |l ="DS_Query"><status code="1">1</st at us></ GVAPI >

The DS_Fetch call to retrieve the requested data is:

<GWAPI cal |l ="DS_Fetch" SessionlD="1">
<dat a nanme="Area">1</dat a>

<dat a nanme="Raw'>0</ dat a>

<dat a name="Recor dCount " >25</ dat a>

</ GVAPI >

214



Integrating With GoldMine

The resulting XML datastream return packet is:

<GWAPI cal |l ="DS_Fetch">
<status code="1">Success</ st at us>

<data nanme="
<dat a nanme="
<data nanme="
<dat a nanme="
<data nane="
<data nane="
<data nane="
</ dat a>

<dat a nanme="

Ret urn">

Header " >

field' >

Fi el d_Name" >CONTACT</ dat a>
Fi el d_Type" >C</ dat a>

Fi el d_Lengt h" >40</ dat a>

Fi el d_Deci nmal ">0</ dat a>

field' >

<dat a nanme="Fi el d_Nane" >COWPANY</ dat a>
<dat a nanme="Fi el d_Type" >C</ dat a>
<dat a nanme="Fi el d_Lengt h">40</ dat a>

<dat a nanme="Fi el d_Deci mal ">0</ dat a>

</ dat a>
<dat a nanme="
<dat a nanme="
<data nanme="
<dat a name="
<dat a name="
</ dat a>
</ dat a>
<data nanme="
<data nanme="
<data Nanme="
<dat a name="
<dat a name="
<dat a name="
</ dat a>
</ dat a>
</ dat a>
</ GVAPI >

field' >

Fi el d_Name" >KEY1</ dat a>
Fi el d_Type">C</ dat a>

Fi el d_Lengt h" >20</ dat a>
Fi el d_Deci nmal ">0</ dat a>

Count Dat a" >3000- 0001</ dat a>
Rows" >
Row' >

CONTACT" >Raf ael Zi nber of f </ dat a>

COVPANY" >Z- Fi rm LLC</ dat a>
KEY1" >Par t ner </ dat a>

The Header node contains child nodes for each field included in the SQL query,
describing the fields” properties. The CountData node’s text corresponds with the
old fetch return packet’s header data:

The first digit can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another

DS_Fetch call

3 indicates the end-of-file (EOF)
4 indicates the beginning-of-file (BOF)

215



Integrating With GoldMine

Number following the dash indicates the total number of data records contained in
the packet.

The Rows node contains a child node for each data record returned by the query.

RETURN PACKET

The “fetch” command returns a single packet string containing the data from all
requested records. The packet includes a header record, followed by one record for
each record evaluated by “fetch.” Within each record in the packet, the fields are
separated by a Field Delimiter, the carriage return character by default (13 or 0x0D).
The records in the packet are separated by the Record Delimiter, the line feed
character by default (10 or 0x0A). These delimiters are convenient when the
requested data does not contain notes from blob fields. Otherwise, you must
override the default delimiters by passing other delimiter values to the “fetch”
command. The characters 1 and 2 would probably make good delimiters for packets
with notes.

An example of a packet of data:

3000- 0004

Bost on| 23

London| 393

Los Angel es| 633

New Yor k| 29
The packet header record consists of two sections. The first byte can be 0, 3
or 4. Zero indicates that more records are available, which could be fetched with
another “fetch” command. A value of 3 indicates the end-of-file (EOF), and 4
indicates the beginning-of-file (BOF). The number following the dash indicates the
total number of data records contained in the packet.

Packets should be designed to be 8K to 32K. DataStream takes about as much time to
read three records as it does to read 30. For best performance, adjust the number to
records requested by the “fetch” command to return packets of 8K

to 32K.

PERFORMANCE

DataStream is the fastest way to read data from GoldMine tables. Used correctly, the
GoldMine DataStream will return the data faster than most development
environments would directly. DataStream offers the following advantages:

1. DataStream issues a single, efficient SQL query or Xbase seek to retrieve the
records from the back-end database to the local client. On SQL databases,
requests of a few hundred records could be sent from the server to the client
with a single network transaction, thereby minimizing network traffic.

2. Allfields and expressions are parsed initially by the “range” and “query”
commands, then quickly evaluated against each record in the “fetch”
command. Other lower level GoldMine.UI methods (and development
environments) require that each field be parsed and evaluated each time the
field’s data is read. This can save a significant amount of time when reading
hundreds or thousands of records.

216



Integrating With GoldMine

3. Only three calls are required to read all the data. Using traditional record-by-
record querying would require one call for each field of each record (reading
10 fields from 50 records would require 500 calls).

The “range” and “query” commands execute equally fast on SQL databases. The
“range” command executes much faster on Xbase tables than the “query” command.

Processing a Web Import Instruction File

<GMAPI call="Execlnilmp”>c:\theimport.ini</GMAPI>

OR
Syntax <GMAPI call="Execlnilmp”>
<data name="IniFile”>c:\theimport.ini</data>
</GMAPI>

An application can send GoldMine a command to process a Web import instruction
file. To start processing an instruction file, send the ExecInilmp command.

(\F For details about setting up and working with the GoldMine Web Import Gateway, see
“Capturing Web Data” in Maintaining GoldMine.

Reading an Xbase Expression Without Opening a File

<GMAPI call="Expr’>Accountno</GMAPI>

OR
Syntax <GMAPI call="Expr”>
<data name="Expression”>Accountno</data>
</GMAPI>

The Expr function is similar to the Read function in that it attempts to evaluate an
Xbase expression and return the result. The Expr function, however, does not require
you to open a specific data file using the Open function. The expression passed to the
Expr function is evaluated against the current operating state of GoldMine (usually,
the currently displayed record), rather than the state of a specific work area. For this
reason, you should be aware that differences between the return values could exist
for the same expression passed to Read and Expr.

PARAMETERS

The Expr function takes one parameter, Expression —the Xbase expression to be
evaluated. GoldMine supports a subset of the Xbase dialect, so there is substantial
flexibility in the application of this function.

When referencing field names within an expression, you should always use an alias;
otherwise, GoldMine assumes CONTACT1 to be the default alias.

RETURN VALUE

The Expr function returns a character string containing the value of the specified
expression. If an error occurs, or the expression could not be evaluated, the Expr
function will return a null string.

217



Integrating With GoldMine

The following XML:

<GVAPI cal | =" Expr">
<dat a nanme="Expressi on" >&anp; C t ySt at eZi p</ dat a>
</ GVAP| >

Returns:

<GWAPI cal | ="Expr">
<status code="1">Col orado Springs, CO 80920</status>
</ GVAPI >

Adding Merge Fields to a Form

<GMAPI call="FormAddFields”>

<data name="FormNo”>1</data>

<data name="FieldList”>contact;company</data>
</GMAPI>

Syntax

The FormAddFields function adds merge fields to a form profile.
PARAMETERS

The FormAddFields function takes two parameters.

FormNo: the number of the form.

FieldList: a string that lists fields, macros, and expressions; each item in the string is
separated by a semicolon (;). GoldMine parses the string, checks for duplication,
assigns names to the fields, and then stores the items.

Deleting Fields from a Form

<GMAPI call="FormClearFields”>
Syntax <data name="FormNo”>1</data>
</GMAPI>

The FormClearFields function opens an existing form profile and deletes all
associated fields.

PARAMETERS

The FormClearFields function takes one parameter, FormNo —the number of the
form.

RETURN VALUE
The FormClearFields function returns 1 if the profile is open, or 0 if an error occurs.

Closing a Form Profile

Syntax <GMAPI call="FormCloseForm”/>

The FormCloseForm function closes an open form profile.

218



Integrating With GoldMine

PARAMETERS
The FormCloseForm function does not accept any parameters.

Creating an Xbase File with Registered Fields

<GMAPI call="FormCreateFile”>
<data name="FormNo”>1</data>
<data name="File”>c:\XXXX.dbf</data>
<data name="MergeCode”>Mergecode</data>
<data name="WhichRec”>1</data>
</GMAPI>

Syntax

The FormCreateFile function creates an Xbase (DBF) file with all registered fields.
Any active filter or group that applies to the contact record is taken into account.
FormCreateFile can be used to export data via the COM Server.

PARAMETERS
The FormCreateFile function takes four parameters.

FormNo: the number of the form.
File: the name of the .DBEF file to be created.

MergeCode: the merge code. If any merge code value(s) are included in the function,
only records with the matching merge code(s) will be included. To include multiple
merge codes, place a space between each individual merge code. If the MergeCode
parameter is empty, all records are included.

WhichRec: indicates which records are to be exported. The WhichRec value is the
sum of values for each available listed below.

WhichRec Values

Value Description

1 Primary

2 Secondary

4 All records

8 Forward to last

16 Return control to the calling program immediately after export has started

EXAMPLES OF WHICHREC PARAMETER

Current contact 1
All primary contacts 5 (1+4)
Forward to last of primary and additional contacts 11 (1+2+8)

RETURN VALUE

The FORMCREATEFILE function returns the total number of records in the output
.DBF file.

219



Integrating With GoldMine

Returning a Field Name for an Expression

<GMAPI call="FormGetFieldName”>
<data name="FormNo”>1</data>
<data name="Field”>contact</data>
</GMAPI>

Syntax

The FormGetFieldName function returns the field name for an expression, a macro,
or a field.

PARAMETERS
The FormGetFieldName function takes two parameters.

FormNo: the number of the form.

Field: the name of the field, macro, or expression to be associated with the file name.

Returning a Value for Unattached Fields

Syntax <GMAPI call="FormNewFormNo”/>

RETURN VALUE

The FormNewFormNo function returns a new, unique FormNo value that can be
used to register fields not attached to a GoldMine form.

Counting the Number of Exported Records

<GMAPI call="FormQueryCreate”>
Syntax <data name="Flags”>0</data>
</GMAPI

The FormQueryCreate function provides status information during an export by
returning the number of records exported during the export process.

PARAMETERS
The FormQueryCreate function takes one optional parameter, Flags.

The following table lists values of FormQueryCreate parameters.

FormQueryCreate Parameters

Value Description
0 Export in progress (default)
1 Start process
2 Abort process
RETURN VALUE

The FormQueryCreate function returns the number of records created while an
export is in progress, or -1 when the record export process is completed.

220



Integrating With GoldMine

FormPrintedDoc

<GMAPI call="FormPrintedDoc”>
Syntax <data name="RecordID”> 9NDJRJIN(EQ[)JW:</data>
</GMAPI

The FormPrintedDoc function is used to complete a pending literature fulfillment
request. Call this function after printing the merge form to remove the pending
literature fulfillment and create a history record.

PARAMETERS
RecordID: the RecID of the pending literature fulfillment request.

Creating a History Record

<GMAPI call="InsHist">
<data name="AccNo">A3042474804 WB9!JCat</data>
<data name="Activity">SLS</data>
<data name="Duration">00:35:00</data>
<data name="0OpReclID”>ValidOpRecid</data>
<data name="RecType">C</data>
<data name="Ref">Informed Paul of sale terms</data>
<data name="ResultCode">DON</data>
<data name="Notes">Ready to proceed to next step</data>
<data name="User">KEVIN</data>
<data name="Private">1</data>
</GMAPI>

Syntax

The InsHistory function is used to create a history record in GoldMine. The
InsHistory function provides a higher level interface for creating these records than
using Open, Append, and Replace.

PARAMETERS

AccNo: the account number of the contact record to which the new history record
will be linked.

Rectype: the record type to create. The following values are available:

InsHistory Activity Valid Values

Value Record Type Value Record Type

A Appointment U Unknown

C Phone call cC Call back

D To-do Cl Incoming call

E Event CM Returned message
L Form CcO Outgoing call

M Sent message MG E-mail message

O Other Mi Received e-mail

S Sale MO Sent e-mail

T Next action

221



Integrating With GoldMine

Duration: the length of time spent on the activity. Format as HH:MM:SS. (optional)

OpRecid: the Recid of the opportunity or project record to link the history activity.
Omit if not linking to a project or opportunity (optional).

Ref: the history reference.

Notes: the Notes for the history record (optional).
Activity: the Activity Code (optional).

ResultCode: the Result Code (optional).

User: the User (optional). If this parameter is not specified, the User field defaults to
the currently logged user.

Private: flag to specify if the history activity should be marked private. Set to 1 for
private, or 0 to public.

RETURN VALUE

The InsHistory function returns the record number (Xbase) or record ID (SQL) of the
new history record if the function was completed successfully. The function returns
0 if a new record could not be appended to the data file.

RETURNED XML
<GVAPI call="InsHi st">
<st atus code="1">1982</ st at us>
</ GVAPI >

Creating or Updating a Document Link

<GMAPI call="LinkDoc">

<data name="RecNo">0</data>

<data name="File">C:\Documents and Settings\Kevin\My

Documents\GMAPNTLog_Mechanics.pdf</data>

Syntax <data name="Desc">Help File</data>

<data name="User">KEVIN</data>

<data name="Notes">Read this</data>

<data name="Sync">1</data>
</GMAPI>

The LinkDoc function is used to create or update a document link in GoldMine.
Document links allow you to launch directly into an application and load the
application with a document by clicking on the desired document listed in the
contact’s Links tab. GoldMine maintains these links as records in the supplementary
data file. The LinkDoc function provides a higher level interface to these records
than can be obtained by using Open, Append, and Replace.

PARAMETERS

RecNo: the record number of the link record to be updated. If a new link record is to
be created, pass 0 as the first parameter.

222



Integrating With GoldMine

File: the fully qualified path and filename of the file to link. Keep in mind that a
valid association must exist for the file’s extension if GoldMine is to automatically
launch the file’s application.

Desc: the document title.

User: the optional document owner. If this field is not passed, the document owner
defaults to the name of the currently logged GoldMine user.

Notes: optional notes for the linked document record in the Links tab.

Sync: defines the remote synchronization status for the linked document from the
values shown in the following table.

Sync Valid Values

Value Action

-1 Uses the GoldMine default as defined by Allow new documents to sync by default in
the Sync tab of the Preferences window.

0 Does not synchronize the newly linked document.

Allows the newly linked document to synchronize.

RETURN VALUE

The LinkDoc function returns the new record number (Xbase) or record ID (SQL) if
the function was completed successfully. The function returns any empty string if a
new record could not be appended to the data file, or an existing record could not be
locked for update.

RETURNED XML
<GVAPI cal | ="Li nkDoc" >

<status code="1">482</st at us>
</ GVAPI >

Displaying a Message Dialog Box

<GMAPI call="MsgBox”>
<data name="Message”>Are you sure?</data>
<data name="Style”>4</data>

</GMAPI>

Syntax

The MsgBox function displays a standard Windows message dialog box.
PARAMETERS

The MsgBox function accepts two parameters.

MsgBox: the message to display within the dialog box.

Style: the optional style of the message box. This value is the sum of the following
options:

223



Integrating With GoldMine

MsgBox Style Values

Value Meaning

0 Display OK button only

1 Display OK and Cancel buttons

2 Display Abort, Retry, and Ignore buttons
3 Display Yes, No, and Cancel buttons
4 Display Yes and No buttons

5 Display Retry and Cancel buttons

16 Display Stop icon

32 Display Question Mark icon

48 Display Exclamation Mark icon

64 Display Information icon

128 First button is default

256 Second button is default

512 Third button is default

RETURN VALUE
The MsgBox function returns the following values:

MsgBox Return Values

Return Description

OK button selected

Cancel button selected

Abort button selected

Retry button selected

Ignore button selected

Yes button selected

N~N[fojloa|lh~A|W|IN|E

No button selected

RETURNED XML
<GWAPI cal | =" MsgBox" >

<status code="1">6</st at us>
</ GVAPI >

224



Integrating With GoldMine

Adding a Merge Form

<GMAPI call="NewForm”>

<data name="AppType”>Microsoft.Word.10</data>

<data name="Template”>c:\Program

Files\GoldMine\Templates\Proposal.doc</data>

Syntax <data name="Title”>Business Proposal</data>

<data name="Macro”>[MsgBox(“Form Added”,”0”)]</data>

<data name="FormType”>0</data>

<data name="Flags”>3</data>
</GMAPI>

The NewForm function adds a merge template record into the Merge Forms window
in GoldMine. This function’s DDE counterpart is used primarily by the document
merge link installation macro; however, the function can also be used to add
additional merge templates from a user-written application.

PARAMETERS

The NewForm function takes up to six parameters; the first three parameters are
required, and the last three parameters are optional.

AppType: the type of document to which the new form record will point. This value
must be a valid Application Identifier, such as Word.Document.6, that corresponds
to an entry in the Registration Database.

Template: the fully qualified path and filename of the template file.

Title: the title of the document as it should appear in the Merge Forms browse
window.

Macro: the name of an optional DDE function to be called after the template is
loaded by the linked application. If this parameter is not specified, the default
function is MAINMENU. This parameter must be passed in DDE call format.

FormType: the optional type of template. If this parameter is not specified, the
template type is assumed to be Document. GoldMine accepts the following values
for this parameter:

Document Types

Type Description

0 Document
1 Spreadsheet
2 Other

Flags: a three-character field corresponding to the values of the Link To Doc, Save
History and Allow Hot Link options on the Form Setup dialog box. To set (check) one
of these options, 1 is passed; to reset (uncheck), 0 is passed.

225



Integrating With GoldMine

Flag Values
Position Description
0 Link To Doc check box
1 Save History check box
2 Allow Hot Link check box

RETURN VALUE
The NewForm function returns a form number.

Playing a Toolbar Macro

<GMAPI call="PlayMacro”>
<data name="Macro”>800</data>
<data name="Wait”>0</data>
</IGMAPI>

Syntax

A macro groups together a series of commands, keystrokes, and/or mouse clicks
into a one-step operation. You can create a macro to automate a sequence of tasks
that you perform frequently in GoldMine. This function plays a macro previously
created in GoldMine.

PARAMETERS

The PlayMacro function takes two parameters that identify the macro and assign a
wait state.

Macro: The first parameter identifies the macro. Either the number for the currently
logged user or a valid macro filename can be used to identify a macro.

IDENTIFYING A MACRO BY NUMBER

Each user can create up to 100 macros from the GoldMine toolbar. Each macro can be
assigned an optional numeric identification from 800 to 899. For example, you can assign
800 to identify your first macro, 801 to identify your second macro, and so on.

For details about creating a macro from the GoldMine toolbar, see “Customizing the
GoldMine Toolbar” in the online Help.

IDENTIFYING A MACRO BY FILE NAME

You can assign a file name to identify the macro, such as
C:\GOLDMINE\MACROS\JOHN.801.

Wait: The second parameter assigns a wait state that determines GoldMine
availability to process another macro or task while the current macro executes. To set
GoldMine to wait for the currently executing macro to finish before starting another
task, set the parameter to 1. For example, if you are setting up a sequence of macros
to run tutorial lessons, you want GoldMine to wait for each lesson to finish before
executing the next macro that will run the following lesson.

To allow GoldMine to perform background processing, such as indexing, while the
macro(s) execute, set the parameter to 0.

226



Integrating With GoldMine

RETURN VALUE
The PlayMacro function returns an integer value based on the wait parameter; that
is, GoldMine availability to process a task in addition to the currently running
macro. If the wait parameter is 0 (GoldMine does not wait for the macro to finish to
process another task), the PlayMacro function will always return 1. If the wait
parameter is 1 (GoldMine will wait for the current macro to finish before processing
another macro or task), the PlayMacro function will return either 0 or 1 under the
following conditions:

PlayMacro Return Values

Return Description
0 Error occurred during macro playback
1 Macro played successfully

You can also play a macro from the command line (DOS prompt). Executing a macro from the
command line can be useful in running functions at night, such as indexing, running an Automated
Process, or synchronizing with remote sites with a transfer set created via macro. You can either
identify a macro by an identification number, like GMW4 /m:801, or by file name like GMW4 /m;c:
\index.801. If necessary, the command line statement can start GoldMine and then, once started,
run the macro.

Optional switches include:

/m:  Logs in automatically to GoldMine

/u:lusername]  Provides the username entry to log in to GoldMine

/p:[password] Provides the password entry to log in to GoldMine

If running the Plus! Pack with Windows, you can run a macro from the System Agent by placing a
command line switch for GoldMine in the Program field of the Schedule a New Program dialog box
that will run a macro. For example, to log in John with his username and password, then run John’s
first macro, place the following macro in the System Agent:

GMWS5 /u:john /p:pswd /m:800

Where GMWS5/ starts Goldmine, u:john/ is login user John, p:pswd/ enters the password
password, and m:800 runs first macro.

227



Integrating With GoldMine

Creating and Sending a Pager Message

<GMAPI call="SendPage”>

<data name="Message”>Your 3:00pm appointment is cancelled</data>
Syntax <data name="To”>PAULR</data>

<data name="From”>Trish</data>
</GMAPI>

The SendPage function allows you to create and send a message to the pager of a
GoldMine user. The function consists of the following components:

Message can consist of any text message that you create with this function to send to
a pager; most pages can accept messages of
70-100 characters.

From includes the sender’s name as an optional “signature.”

To identifies an optional GoldMine user who will receive the pager message.
Information about the pager must be entered in the Edit|Preferences|Pager tab, such
as ID code or PIN number, telephone number of the pager, and maximum message
size in characters that the pager can accept.

RETURN VALUE
The SendPage function can return one of two values.

SendPage Return Values

Return Description
0 Error occurred during the attempt to send the message to the pager
1 Pager message was transmitted successfully

Displaying a Message in the GoldMine Status Bar

<GMAPI call="StatusMsg”>
<data name="Message”>Waiting for command</data>
<data name="Delay”/>

</GMAPI>

Syntax

The StatusMsg function displays a message in the GoldMine status bar.

PARAMETERS
Message: the message to be displayed in the status bar.

Delay: an optional delay, after which time the message is removed from the status
bar.

RETURNED XML
<GWAPI cal | =" St at usMsg" >

<status code="1">Success</ st at us>
</ GVAPI >

228



Integrating With GoldMine

Converting TLog Timestamps

<GMAPI call="SyncStamp”>
Syntax <data name="Stamp”>20040120:10:36:52</data>
</GMAPI>

The SyncStamp function converts a TLog timestamp to a date and time
representation, and from a date and time representation back to the TLog time stamp
format.

PARAMETER
The SyncStamp function takes one parameter, Stamp.

RETURN VALUES

When the Stamp parameter is exactly 17 characters long, formatted as Date:Time in
form of CCYYMMDD:HH:MM:SS, the return string is in TLog time stamp format,
exactly seven characters long. When the Stamp parameter is seven characters long,
and formatted as a TLog timestamp, the return string is formatted as
CCYYMMDD:HH:MM:SS. An empty return string indicates an error.

RETURNED XML
<GWAPI cal | ="SyncSt anp"” >

<status code="1">A6P9FC8</ st at us>
</ GVAPI >

Updating the Sync Log File

SYNTAX
<GMAPI call="UpdateSyncLog" >
<data name="Table">Contactl</data>
XML <data name="RecID">9NDJRJIN(EQ[)JW:</data>
<data name="Field">Key3</data>
<data name="Action">U</data>
</GMAPI>
PARAMETERS

Table specifies the table name (such as “Contact1”) or the table ID.

ReclD specifies the RecID of the updated record: the correct RecID must be passed,
and the RecID value must be exactly 15 characters long.

Field specifies the name of the field that has changed. This parameter is only relevant
when the Action parameter is U. Field is ignored when Action is N or D.

Action should be N when a new record has been appended, D when a record has
been deleted, or U when a field in a record has been updated.

229



Integrating With GoldMine

RETURN VALUES
The UpdateSyncLog function returns the following XML:
<GVAPI cal | =" Updat eSyncLog" >

<status code="4">Field TLog entry created. </status>
</ GVAPI >

UpdateSyncLog Code Attribute Values

Return Description

0 Error

1 New TLog entry created

2 New TLog entry updated

4 Field TLog entry created

8 Field TLog entry updated

16 Deleted record TLog entry created
32 New TLog Entry removed

Importing a Prepared TLog Import File

ReadImpTLog reads the status of a TLog import file, then deletes the import file
when the process is completed.

SYNTAX
<GMAPI call="ReadlmpTLog" >
XML <data name="File">c:\tlogs\mytlog.dbf</data>
<data name="Delete">1</data>
</GMAPI>
PARAMETERS

File specifies the import file name —see below for the import file structure.
Delete specifies to delete the import file when the process has completed.

RETURN VALUES
ReadImpTLog function returns the following values in the code attribute:

ReadlmpTLog Code Attribute Values

Code Description

0 Failure

1 Success -- Text is total number of imported TLog records
NOTES

Your application can determine when the imported process completes by setting the
Delete parameter to 1, and noting when the import file is deleted. The TLog import
must have the structure shown in the following table.

230



Integrating With GoldMine

TLog Import Structure

Field Name Type Length
Table ID char 10
RecID char 15
Field ID char 10
Action ID char 1

Forcing Logout

SYNTAX
<GMAPI call="ForceLogout" >
<data name="LogoutSelf">1</data>
XML <data name="Relogin">1</data>
<data name="InMinutes”>1</data>
</GMAPI>

The ForceLogout command forces all users to logout of GoldMine.

PARAMETERS

LogoutSelf: specifies if the currently logged in user should also be logged out. 1 for
rue, 0 for false.

Relogin: Set to 1 to indicate for GoldMine to relogin after the users are logged out.

InMinutes: Specifies the number of minutes to wait before forcing the logout.

Reading Security and Rights

RETRIEVING USER PERMISSIONS

The UserAccess function retrieves specific permission information for the logged-in
user.

SYNTAX

XML <GMAPI call="UserAccess"/>

This command returns a data element for each of the following permissions for the
logged in user. The text value of the data element will be either 0 or 1, indicating if
the permission is granted for the user.

Permissions Returned by UserAccess
Rights
Master Rights

Other User Calendar Access

Other User History Access

Other User Sales Access

231



Integrating With GoldMine

Rights

Other User Report Access

Other User Merge Form Acccess

Other User Filter Access

Other User Groups Access

Other User Links Access

Create Records

Edit Records

Delete Records

Change Owner

Field Views

Schedule APs

SQL Queries

NetUpdate

Build Groups

RETURNED XML

<GWAPI cal |l ="User Access">

<status code="1">Success. </ st at us>

<data name="return">

<dat a name="Master Rights">1</data>

<data name="CQ her User Cal endar Access">1</dat a>
<data name="Qther User History Access">1</data>
<data name="Q her User Sal es Access">1</data>
<data name="Qt her User Report Access">1</data>
<data name="CQ her User Merge Form Access">1</dat a>
<data name="Qt her User Filter Access">1</data>
<dat a name="Q her User G oups Access">1</dat a>
<data name="CQ her User Links Access">1</data>
<dat a nanme="Create Records">1</data>

<data name="Edit Records">1</dat a>

<dat a nanme="Del ete Records">1</dat a>

<dat a name="Change Owner">1</dat a>

<data name="Field Vi ews">1</dat a>

<dat a name="Schedul e APs">1</dat a>

<data name="SQ. Queries">1</data>

<dat a name="Net Updat e" >1</ dat a>

<data name="Build G oups">1</dat a>

</ dat a>

</ GVAPI >

232




Integrating With GoldMine

RETRIEVING CALENDAR PERMISSIONS

Using CalAccess, you can query whether the user logged in to GoldMine has
permissions to read/write a particular CAL record.

SYNTAX
<GMAPI call="CalAccess”>
<data name="RecordType”>C</data>
XML <data name="User”>KEVIN</data>
<data name="Numberl”>22</data>
</GMAPI>
PARAMETERS

Pass this command the record type and numberl value from the calendar record in
question. Also pass the user you wish to query if they have permission to this record
or not.

RecordType is the RecType of the record.
User is the UserID of the record.
Numberl is the Numberl value of the record.

RETURN VALUES
The CalAccess function returns 1 if the user has rights to read/write.

RETRIEVING HISTORY ACCESS

Using HistAccess, you can query if the user logged has rights to read/write a
CONTHIST record.

SYNTAX
<GMAPI call="HistAccess”>
<data name="RecordType”>C</data>
XML <data name="User”>KEVIN</data>
</GMAPI>
PARAMETERS

Pass this command the record type value from the calendar record in question. Also
pass the user you wish to query if they have permission to this record or not.

RecordType is the RecType of the record.
User is the UserID of the record.

RETURN VALUES
The HistAccess function returns 1 if the user has rights to read/write.

233



Integrating With GoldMine

Macros

To facilitate the use of DDEAUTO fields, GoldMine allows you to select a macro as
the service item. Upon encountering a DDE service item that starts with an
ampersand (&), GoldMine searches an internal table of macro names. If a match is
found, the macro is processed and the result is returned, as if a DDE function or
expression had been used. The GoldMine COM Server recognizes these same
macros for use in such methods as Expr and Macro.

Most macros are sensitive to the setting of the RECORDOBJ function’s SETRECORD
subfunction. This function is used primarily to gain access to additional contacts and
other supplementary information. When the SETRECORD type is set to PRIMARY,
the following macros will return the value from the corresponding fields in the
primary information portion of the contact record. When the SETRECORD type is
set to CONTACTS (additional contacts), or another supplementary record type, the
macros will return the value from the corresponding field in the supplementary file
(CONTSUPP.DBF).

Executing Macros

To evaluate any of the macros described in this section, use the Macro command for
the GoldMine COM Server.

<GMAPI call="Macro”>
Syntax <data name="Macro”>&amp;FullAddress</data>
</GMAPI>

RETURNED XML
The XML returned will of course vary based on the Macro requested.

For the example in the Syntax table above, the XML returned is:

<GWAPI cal | =" Macro" >

<status code="1">1150 Kelly Johnson Bl vd. Col orado Springs, CO 80920
</ status>

</ GVAPI >

Available Data-Related Macros

&Address Returns a string containing the values of both &Address1 and
&Address2, separated by a carriage return and line feed character. If
either &Address1 or &Address2 does not contain any data, a single line
of data is returned, without the carriage return and line feed character.
This macro can be used to perform rudimentary blank line suppression
within linked applications that do not support blank address line
suppression internally.

The action of this macro string is similar to the action of the &Address
macro. The &Address2 macro can be used to return an additional contact
address by using the RECORDOBJ SETRECORD subfunction.

234



Integrating With GoldMine

&Address1

&Address?2

&BrowseRecNo

&CalRefresh
&City

&CityStateZip

&CommonDir

Returns the first Address field from the active contact record. Typically, this
value will be extracted from the Address1 field in the primary display
portion of the contact record; however, when the RECORDOBJ
SETRECORD subfunction has been used to change the returned record
type to CONTACTS, then GoldMine returns the value from the Address1
field on the additional contact record, if a value is entered. When the
Address1 field on the additional contact record is blank, then the
&Address1 macro returns the value in the Addressl1 field in the primary
display portion of the contact record. When the RECORDOBJ
SETRECORD type is set to return a record type other than CONTACTS,
the &Address1 macro returns the value in Addressl1 field in the primary
display portion of the contact record.

Returns the second Address field from the active contact record. Typically,
this value will be extracted from the Address2 field in the primary display
portion of the contact record; however, when the RECORDOBJ
SETRECORD subfunction has been used to change the returned record
type to ADDITIONAL, then GoldMine returns the value from the Address2
field on the additional contact record, if an entry exists in the Address?2 field
on the additional contact record. When the Address2 field on the additional
contact record is blank, then the & Address2 macro returns the value in the
Address2 field in the primary display portion of the contact record. When
the RECORDOBJ SETRECORD type is set to return a record type other
than PRIMARY or ADDITIONAL, the &Address2 macro returns the value
in the Address2 field of the primary display portion of the contact record.

Xbase: Returns the record number of the last selected record in a browse
window.
SQL: Returns the record ID of the last selected record in a browse window.

Refreshes the graphical calendar display.

Returns the City field from the active contact record. The action of this
macro string is similar to the action of &Address1. The &City macro can
be used to return an additional contact city by using the RECORDOBJ
SETRECORD subfunction.

Returns a format string of text containing the City, State, and Zip fields
from the active contact record. This string is returned in the following format:
City, State Zip

The action of this macro string is similar to the action of &Addressl. The
&CityStateZip macro can be used to return an additional contact city,
state, and ZIP Code by using the RECORDOBJ SETRECORD
subfunction.

Xbase: Returns the path information for the directory where the contact
sets are located.
SQL: Returns the BDE alias where the contact sets are located.

235



Integrating With GoldMine

&Contact Returns a Contact name from the active contact record. Normally, this
value will be extracted from the Contact field in the primary display portion
of the contact record; however, the RECORDOBJ SETRECORD
subfunction can be used to change the returned record type to additional
contact, or another type of supplementary record. When the RECORDOBJ
SETRECORD type is set to return record types other than PRIMARY, the
&Contact macro returns the value in Contact field in CONTSUPP for the
current supplementary record.

&Country Returns the Country field from the active contact record. The action of this
macro string is similar to the action of &Address1. The &Country macro can
be used to return an additional contact country by using the RECORDOBJ
SETRECORD subfunction.

&Diall Returns the Phonel entry from the active contact record. The returned
phone number is formatted for dialing. GoldMine applies the same rules
used to dial the phone via TAPI. If selected, PREDIAL.INI settings are
applied to phone number selection.

&Dial2 Returns the Phone2 entry from the active contact record. For details, see
&Diall above.

&Dial3 Returns the Phone3 entry from the active contact record. For details, see
&Diall above.

&DialFax Returns the FAX entry from the active contact record. For details, see
&Diall above.

&EmailAddress Returns the primary e-mail address for the currently selected contact.

&Fax Returns the fax number as it should be sent to an auto-dialer for automatic
fax transmission.

&Filter Returns the activated filter expression.

&FirstName Returns the first name of the current contact.

&FullAddress Returns a string containing the complete address for the contact record,

composed of values of &Address1, &Address2, &City, &State, and &ZIP.
The action of this macro string is similar to the action of &Address1. The
&FullAddress macro can be used to return an additional contact address by
using the RECORDOBJ SETRECORD subfunction.

236



Integrating With GoldMine

&GetRoTabID

&GetRoTabPos

&GoldDir

&LastFirstName

&LicUsers

&LicUsersAvailable

&NameAddress

Returns the ID of the currently selected tab. Typically, this value will verify
that the correct tab is selected when a user starts a custom application.
The following values are valid:

0 - Summary

1 - Fields

2 - Notes

3 - Contacts

4 - Details

5 - Referral

6 - Pending

7 - History

8 - Links

9 - Member

10 - Tracks

11 - Opps

12 - Projects

13 - Tickets

The following example tests the selection of the Details tab:
ch=DDElInitiate(“GoldMine”, “Data”)

If DDERequest$(Ch, “&GetRoTabID”) <> “4” Then

MsgBox “You must select a detail record first”

End If

Returns the currently selected tab position. Since the tabs can be
rearranged, this method is not always reliable for determining the currently
selected tab. For details, see &GetRoTabID.

Xbase: Returns path information for the directory in which GoldMine is
installed.
SQL: Returns path information for BDE alias in which GoldMine is installed.

Returns the name of the current contact in the format:
last name, first name

Returns the number of concurrent users allowed to log in to the installed
copy of GoldMine.

Returns the number of users allowed to log in to the installed copy of
GoldMine license.

Returns a string containing the contact’'s name, company, and complete
address of the current contact record. Each address line is separated by a
carriage return and line feed, and the entire string is formatted so that the
string can be inserted directly into a merge template. If any of the address
lines on the contact record is empty, that address line will be suppressed.
This macro can be used to perform rudimentary blank line suppression
within linked applications that do not support blank address line
suppression internally.

The action of this macro string is similar to the action of the &ADDRESS
macros, and the &NAMEADDRESS macro can be used to return an
additional contact address by using the RECORDOBJ SETRECORD
subfunction.

237



Integrating With GoldMine

&NameTitleAddress

&NewReclD

&Notes

&Phone

Returns a string containing the contact’s name, title, department, company,
and complete address of the current contact record. Each line is separated
by a carriage return and line feed, and the entire string is formatted so that
the string can be inserted directly into a merge template. If any of the lines
on the contact record is empty, that line will be suppressed. This macro can
be used to perform rudimentary blank line suppression within linked
applications that do not support blank address line suppression internally.
The action of this macro string is similar to the action of the &ADDRESS
macros, and the &NAMETITLEADDRESS macro can be used to return an
additional contact address by using the RECORDOBJ SETRECORD
subfunction.

Returns a unique record ID, which can be used when creating new records.

Returns the Notes from the active contact record. Typically, this value will
be extracted from the Notes field in the primary display portion of the
contact record; however, the RECORDOBJ SETRECORD subfunction can
be used to change the returned record type to additional contact, or another
type of supplementary record. When the RECORDOBJ SETRECORD type
is set to other than PRIMARY, the &TITLE macro returns the value in Notes
field in CONTSUPP for the current supplementary record.

Returns a telephone number from the selected contact record.

The action of this macro string is similar to the action of the &ADDRESS1.
The &PHONE macro can be used to return an additional contact telephone
number by using the RECORDOBJ SETRECORD subfunction.

238



Integrating With GoldMine

&Profile(s)

&RoTabPage

&SerialNo

Two related macros:

&Profile: Returns the first matching profile record for the selected contact.
&Profiles: Returns all profile records for the selected contact.

Both of these macros take optional parameters. Each parameter must be
separated by a period (.). The following examples show the syntax for the
&Profile(s) macros:

&PROFILE EXAMPLE 1
&Profile. Profil eNane. Ref erence. Fl ags

Retrieves the first profile that matches the ProfileName and Reference.
The Reference parameter is optional. If passed, the Reference parameter
acts as a “begin with” condition on the profile reference. If the Reference
parameter is not passed, all ProfileName profiles are evaluated.

The optional Flags parameter has the following values:

2 Returns the extended profile fields

4 Returns the ProfileName and Reference

The &Profile(s) macro can easily fill in a Word table with the selected
contact’s profile information because tabs separate each field value, and a
CRILF separates each profile record.

&PROFILE EXAMPLE 2

The following example returns the first e-mail address of the contact:
&Profile. E-mail Address

&PROFILES EXAMPLE 1
The following example returns all the computer profiles that begin with the
word notebook:
&Pr of i | es. Conput er . Not ebook

&PROFILES EXAMPLE 2
The following examples use the Flags parameter to specify the profile fields
to return:
&Pr of i | es. Conput er . Not ebook
Not ebook Thi nkPad 770|
Not ebook Conpaq Elite|
Not ebook Del |l 1200]|
&Prof i | es. Conput er . Not ebook. 2
Conput er | Not ebook Thi nkPad 770|
Conput er | Not ebook Conpaq Elite|
Conput er | Not ebook Del | 1200] |
&Prof i | es. Conput er. Not ebook. 4
Conput er | Not ebook Thi nkPad 770| | BM 233M|
Conput er | Not ebook Conpaq Elite| Conpaq| 200nz|
Conput er | Not ebook Del |l 1200| Del | | 166nz|

Returns the currently selected tab. Typically, this value will verify that the
correct tab is selected when a user starts a custom application. Values
between 1 and 9 represent tabs in the first row of tabs; for example, 1
represents the Summary tab. Values between 10 and 18 represent tabs in
the second row, and 19-27 represent tabs in the third row.

Returns the serial number of the installed GoldMine program.

239



Integrating With GoldMine

&SetRoTab#

&ShutDown

&State

&SysDir
&Sysinfo

&Title

&User_Var

&UserFullName

&UserName
&Version
&WebSite
&ZIP

Selects the tab that corresponds to the number (represented by #) in the
active contact record.
&Set RoTab# Exanpl e

&Set RoTab3
Displays the Notes tab in the contact record.

Logs out the currently logged user, and quits GoldMine.

Returns the State field from the active contact record. The action of this
macro string is similar to the action of the &RADDRESSL1. The &STATE
macro can be used to return an additional contact state by using the
RECORDOBJ SETRECORD subfunction.

Returns the GoldMine system directory.

Displays system information as returned by Help>About GoldMine>System
Info.

Returns the Title from the active contact record. Normally, this value will be
extracted from the Title field in the primary display portion of the contact
record; however, the RECORDOBJ SETRECORD subfunction can be
used to change the returned record type to additional contact, or another
type of supplementary record. When the RECORDOBJ SETRECORD type
is set to other than PRIMARY, the &TITLE macro returns the value in Title
field in CONTSUPP for the current supplementary record.

Returns the defined field value from all users, a specified user, or the
currently logged user. For details on defining values, see “Defining Field
Values for use with External Applications” in Maintaining GoldMine.

The &User_Var macro allows GoldMine users to store specific data that
can be retrieved later into applications that are linked with GoldMine. This
macro can be defined in the [user_var] section of both the GM.INI and the
username.INI of GoldMine.

Usage Syntax:
&Jser Var. <vari abl e nane>. <Col dM ne user nanme>

Example:
&User _Var. Territory. Dan

(Where <variable name> is a descriptive name of the macro and
<GoldMine username> assigns a defined value to a specific GoldMine
user.) <GoldMine username> is optional, as GoldMine will assign these
values to the current GoldMine user.

Returns the full name of the currently logged GoldMine user as the name
appears in the FullName field in the Users Master File for the user.

Returns the login name of the currently logged GoldMine user.
Returns the version number of the installed GoldMine program.
Returns http://<Web site> for the active contact.

Returns the Zip field from the currently active contact record. The action of
this macro string is similar to the action of the &ADDRESS1. The &ZIP
macro can be used to return an additional contact ZIP Code by using the
RECORDOBJ SETRECORD subfunction.

240



Integrating With GoldMine

Macros for Merge Forms

The following macros are used primarily for creating links to GoldMine through the
Merge Forms function. The values returned by each of these macros are updated by

GoldMine when a Merge Form is launched by selecting Edit, Link, Print or Fax from

the Merge Forms dialog box.

&PARAM1 Returns the path and filename of the document template associated with the merge
(filename) form selected when Edit, Link, Print, or Fax was selected. This value is obtained
from the Template File field in the merge form’s Form Setting dialog box.

&PARAM2 Returns a value indicating whether the Edit, Link, Print, or Fax button was selected
(action) to launch linked application.

&PARAM?2 Parameters

Value Description

1 Edit selected

2 Link selected

3 Print selected

4 Fax selected

&PARAM3 Returns a value corresponding to the setting of the Record Range options on the
(range) Merge Forms dialog box when the Edit, Link, Print, or Fax button was selected.

&PARAM3 Parameters

Value Description

1 This contact selected

2 All contacts selected

3 Forward to last selected

&PARAM4 Returns a value corresponding to the setting of the Primary and Additional check
(scope) boxes on the Merge Forms dialog box when the Edit, Link, Print, or Fax button
was selected.

&PARAM4 Parameters

Value Description

1 Primary checked

2 Additional checked

3 Both Primary and Additional checked

241




Integrating With GoldMine

&PARAM5 Returns a value corresponding to the status of the Link to Doc, Save History,
(flags) and/or Allow Hot Link check boxes on the Merge Forms dialog box. In addition,
the returned value determines whether the form was merged as the result of an
Automated Processes action.
Returns a seven-character string. Each position of the string can contain either 0,
indicating the item was not checked (or Automated Processes is not active), or 1,
indicating the item was checked (or Automated Processes is active).

&PARAMS Parameters

Position Description

1 Link to Doc

2 Save History

3 Allow Hot Link

4 Unused

5 Unused

6 Unused

7 Automated Processes status

&PARAM6 Returns a value containing the record number of the last Linked Document

(LinkDoc supplementary record created as a result of launching a Merge Form. When you

record launch a merge form with Link to Doc selected, GoldMine creates a linked

number) document record to hold the saved document. This value can be saved and used to
update the linked document record by passing the record number to the LinkDoc
function.

&PARAM7 Returns a pointer to a minimized contact record that is created when Print or Fax is

(contact selected on the Merge Forms dialog box, and the Record Range is All Contacts

record or Forward to Last. This value can then be passed to the RecordObj function to

pointer) further control a document merge from the linked application.

&PARAMS8 Returns the merge code entered in the Merge code field of the Merge Forms
(merge code  dialog box.
value)

&PARAM9 Returns the RecNo or ReclID of the history record created by GoldMine. This macro
(history is useful for updating the history record.
record)

Macros for the GoldMine License

The following macros return data for the current GoldMine license. The descriptions
for each macro include the corresponding field name from the form that appears in
the Registration tab of the GoldMine Net-Update window. For details on the Net-
Update process, see “Updating your Copy of GoldMine” in the online Help.

&LicInfoLicTo Returns the Organization entry from the registration form.
&Liclnfo_Contact Returns the Contact Name entry from the registration form.
&Liclnfo_LicEmail Returns the E-mail address entry from the registration form.

242



Integrating With GoldMine

&Liclnfo_Phone
&Liclnfo_Fax
&Liclnfo_Addressl
&Liclnfo_Address2
&Liclnfo_City
&Liclnfo_State
&Lliclnfo_Zip

&Liclnfo_Country

Returns the telephone number entry from the first Phone/Fax field.
Returns the fax number entry from the second Phone/Fax field.
Returns the Address1 entry from the registration form.

Returns the Address?2 entry from the registration form.

Returns the city entry from the first City/State field.

Returns the state or province entry from the second City/State field.
Returns the ZIP Code entry from the first Zip/Country field.

Returns the country entry from the second Zip/Country field.

Controlling the GoldMine User Interface

There are a number of commands that allow the programmatic control of the
GoldMine user interface. For example, menu commands can be executed; controls
can be populated, enabled, or disabled; and windows can be allowed to launch or

vetoed.

There are three general groups of commands to accomplish these tasks. The first
group of commands provides information as to the windows and dialogs available
to be controlled and the methods to subscribe to events concerning those windows.
The second group of commands manipulates the controls on GoldMine’s windows
and dialog boxes. The final group is event methods that are implemented in the
intregration to handle events that are raised based on the events subscribed to.

The events in the GoldMine.Ul class require a command to be called to
subscribe to the desired event. The events in the GoldMine.RecObj class
and the GoldMine.GMSystemEvents class do not require subscription.

Getting Window Information

The GetAvailableWindowsList and GetActiveWindowsList commands return
information about the available and active windows in GoldMine. This information
is needed to supply data to the event subscription commands and control
manipulation commands.

GETAVAILABLEWINDOWSLIST
GetAvailableWindowsList returns all of the available GoldMine windows in XML

format.

SYNTAX

XML <GMAPI call="GetAvailableWindowsList"/>

243




Integrating With GoldMine

RETURNED XML
The XML returned is a long list of available windows for GoldMine. It has the
following format. This represents a truncated list of available windows. The actual
list is too extensive to list in this document. All window names are descriptive and
self-explanatory as to which window they represent. Send the
GetAvailableWindowList command for a complete list of windows.

<GVAPI cal | =" Get Avai | abl eW ndowsLi st ">

<status code="1">Success</status>

<dat a name="W ndowsLi st">

<dat a nane="w ndow' >Dl ALOGFI LEDFOLDERPROPERTI| ES</ dat a>
<dat a nane="w ndow'>DlI ALOGVAI LSEARCH</ dat a>

<dat a nanme="w ndow'>DI ALOGEMAI LACCNTPROPS</ dat a>

<dat a name="w ndow'>DI ALOGEMAI LAUTOFI LEMONTH</ dat a>
<dat a name="wi ndow'>DI ALOGDI G TALI DEXPORTPRI VATE</ dat a>
<dat a name="w ndow' >DI ALOGSOFTPHONE</ dat a>

<dat a name="wi ndow'>Dl ALOGSI P_SP_SETTI NGS</ dat a>

</ dat a>

</ GVAPI >

GETACTIVEWINDOWSLIST

The GetActiveWindowsList supplies detailed information regarding the windows
and dialog boxes currently active in GoldMine.

SYNTAX

XML <GMAPI call="GetActiveWindowsList"/>

RETURNED XML

Below is an example XML document describing one active window, the current
contact screen. For an accurate representation of the window you wish to control,
call GetActiveWindowsList with that window active. Doing so will provide a
reference for programming your integration.

All window elements are stored in the WindowsList element. Each Window has
child elements providing detailed information about the window. Some child
elements store additional child elements when further nesting is required to provide
all properties of the windows and the controls they contain. Commands that
manipulate the controls on a window expect the handle the parent window (hwnd)
and the control’s id, along with the properties of the control that are being changed.
Retrieve the hwnd and the control id from the GetActiveWindowsList command.

<GVAPI cal | ="Get Acti veW ndowsLi st">
<status code="1">Success</status>
<dat a name="W ndowsLi st">

<dat a name="wi ndow' >

<dat a nanme="hWhd">197868</ dat a>

244



Integrating With GoldMine

<dat a nane="W ndowNane" >0BJECTCURRENTGQVRECORD</ dat a>
<dat a nane="W ndowl nt er nal Nane" >OBJECT: GVRECORD</ dat a>
<dat a name="Capti on">Front Range Sol uti ons, |nc.</data>
<dat a name="W nType" >W ndow</ dat a>
<dat a name="W ndowRect " >

<dat a nanme="Left">140</ dat a>

<dat a name="Ri ght">722</ dat a>

<dat a nanme="Bott oni >484</ dat a>

<dat a name="Top">81</ dat a>

</ dat a>

<data name="d i ent Rect ">

<dat a name="Left">144</dat a>

<dat a name="Ri ght">718</ dat a>

<dat a nane="Bott onf >480</ dat a>

<dat a name="Top">111</dat a>

</ dat a>

<data name="Control s">

<data nanme="nmsctl|s_updown32">

<dat a nanme="Enabl ed" >1</ dat a>

<dat a name="Vi si bl e">1</ dat a>

<dat a nane="Parent| D'>197868</ dat a>
<dat a nane="hWhd">1770672</ dat a>
<dat a nane="| D'>700</ dat a>

</ dat a>

<data nanme="msctl|s_updown32">

<dat a nanme="Enabl ed">1</ dat a>

<dat a name="Vi si bl e">1</ dat a>

<dat a nane="Parent| D'>197868</ dat a>
<dat a nane="hWhd" >66798</ dat a>

<dat a nanme="|D'>704</ dat a>

</ dat a>

<dat a name="gmMdBr owse" >

<dat a nanme="Enabl ed">1</ dat a>

<dat a name="Vi si bl e">1</ dat a>

<data nane="Parent| D'>197868</ dat a>
<dat a nane="hWhd" >66812</ dat a>

<dat a nanme="I|D'>1003</ dat a>

<dat a name="Text">H story of FrontRange Sol utions,
I nc. </ dat a>

<dat a name="Control s">

<dat a name="Scrol | Bar" >

<dat a nanme="Enabl ed">1</ dat a>

<dat a nanme="Vi si bl e">1</ dat a>

<dat a nanme="Parent| D'>66812</ dat a>
<dat a nane="hWhd" >66814</ dat a>
<data nane="|D'>100</ dat a>

245



Integrating With GoldMine

</ dat a>
</ dat a>
</ dat a>
</ dat a>
</ dat a>
</ GVAPI >

Registering for Events

Before you can receive events from the GoldMine.UI class, you need to subscribe to
the specific events you wish to receive for the desired windows.

When using Visual Basic 6.0, be sure to declare your GoldMine objects
using the WithEvents qualifier.

Dim WithEvents GMODbj as GoldMine.Ul

REGISTERVETOWINDOWLAUNCH

RegisterVetoWindowLaunch subscribes to an event for the specified window giving
the integration the opportunity to either veto or allow the window launch.

SYNTAX
<GMAPI call="RegisterVetoWindowLaunch" >
<data name="Window”> DIALOGSCHEDULEDEFAULT</data>
XML <data name="Monitor”>1</data>
</GMAPI>
PARAMETERS

Window: the name of the window to monitor. The GetAvailableWindowsList
command provides valid window names.

Only dialog boxes can be vetoed. For example, the schedule and complete
windows are dialog boxes. Core GoldMine windows cannot be vetoed (the
record object, the email center, etc)

Monitor: specifies to either begin monitoring for the event (1) or to unsubscribe from
the event (0).

RETURNED XML

The following XML is returned:
<GWAPI cal | ="Regi st er Vet oW ndowLaunch" >
<status code="1">Success</ st at us>
</ GVAPI >

For information on handling the event, see Handling GoldMine.Ul Events below.

246



Integrating With GoldMine

REGISTERWINDOWUPDOWN

RegisterWindowUpDown subscribes to an event for the specified window notifying
the integration when the desired window is launching or closing.

SYNTAX
<GMAPI call="RegisterWindowUpDown" >
<data name="Window”> DIALOGSCHEDULEDEFAULT</data>
XML <data name="Monitor”>1</data>
</GMAPI>
PARAMETERS

Window: the name of the window to monitor. The GetAvailableWindowsList
command provides valid window names.

Monitor: specifies to either begin monitoring for the event (1) or to unsubscribe from
the event (0).

RETURNED XML

The following XML is returned:
<GWAPI cal | =" Regi st er W ndowUpDown" >
<status code="1">Success</status>
</ GVAPI >

For information on handling the event, see Handling GoldMine.Ul Events below.

REGISTERCOMMANDEXEC

RegisterCommandExec is used to subscribe to events raised when a particular
control is manipulated on the specified window. For example, your application can
receive notification when the user combo (dropdown) box is changed on the
Schedule a Call dialog.

SYNTAX
<GMAPI call="RegisterCommandExec" >
<data name="Window">DialogScheduleDefault</data>
<data name="ControlID">1</data>
XML <data name="CommandID">0</data>
<data name="Monitor">1</data>
</GMAPI>
PARAMETERS

Window: The name of the window to monitor. The GetAvailableWindowsList
command provides valid window names.

ControllD: The ID of the control to monitor. This ID is provided in the child
elements for the specified window provided by the
GetAvailableWindowsList.

247



Integrating With GoldMine

CommandID: The type of event to monitor (i.e. button clicked). The possible values
for the CommandID are enumerated within the GoldMine object.
Provided notification command ID’s include ButtonStates,
ComboBoxStates, EditControlNotifications, and ListBoxNotifications.

The CommandID enumerations can be viewed in the Object Browser in
Visual Basic 6.0

Monitor: Specifies to either begin monitoring for the event (1) or to unsubscribe from
the event (0).

RETURNED XML
The following XML is returned:
<GWAPI cal | ="Regi st er CoomandExec" >

<status code="1">Success</ st at us>
</ GVAPI >

For information on handling the event, see Handling GoldMine.Ul Events below.

REGISTERTABDETAILSEVENTS

RegisterTabDetailsEvents is used to subscribe to events raised when a particular
Record Object Tab is manipulated. For example, your application can receive
notification when the user clicks on an item in a tab, but without the item being
zoomed or opened.

SYNTAX
<GMAPI call="RegisterTabDetailsEvents">
XML <data name="Monitor">1</data>
</IGMAPI>
PARAMETERS

Monitor: Specifies to either begin monitoring for the event (1) or to unsubscribe from
the event (0).

The following tab events are monitored:
AdditionalContactClick
DetailsClick
ReferralClick
PendingClick

HistoryClick
LinkedDocClick

ADDITIONALCONTACTCLICK

RETURNED XML
The following XML is returned for AdditionalContactClick:

<G@VAPI event =" Addi ti onal Contactd i ck">

248



Integrating With GoldMine

<Rec| D>99UZA30O%* O%1?$</ Recl D>
<Account No>A1121345737( &gt ; C9"HBob</ Account No>
<Ref erence/ >
<Phone/ >
<Cont act >Fr ances</ Cont act >
</ GVAPI >

PARAMETERS
ReclID: The record ID for the additional contact.

AccountNo: The account number of the parent contact.
Reference: The reference field value.

Phone: The phone field value.
DETAILSCLICK

RETURNED XML
The following XML is returned for DetailsClick:
<GVAPI event="Detail sCick">
<Rec| D>99UZC5R( * 2! 2H?$</ Recl D>
<Account No>A1121345737( &gt ; C9"HBob</ Account No>
<Type>E-mai | Address</ Type>
<Ref erence>sone. emai | @onmai n. conk/ Ref er ence>
</ GVAPI >

PARAMETERS
RecID: The record ID for the detail.

AccountNo: The account number of the contact.
Type: The type of the detail.

Reference: The reference field value.

PENDINGCLICK

RETURNED XML
The following XML is returned for PendingClick:

<GWAPI event ="Pendi ngC i ck">
<Rec| D>BA5OXQT%Z K] W/</ Recl D>
<Account No>A1121345737( &gt ; C9"HBob</ Account No>
<RecType>C</ RecType>
<User Nanme>@GUY</ User Nane>
</ GVAPI >

249



Integrating With GoldMine

PARAMETERS
RecID: The record ID for the pending item.

AccountNo: The account number of the contact.
RecType: The record type of the pending item.

UserName: The owner name.
HISTORYCLICK

RETURNED XML
The following XML is returned for HistoryClick:
<GWAPI event="Hi storyCdick">
<Recl| D>BA4U3BKYBK! J] W/</ Recl| D>
<Account No>A1121345737( &gt ; C9"HBob</ Account No>
<RecType>L</ RecType>
<User Name>@UY</ User Nanme>
</ GVAPI >

PARAMETERS
RecID: The record ID for the history item.

AccountNo: The account number of the contact.
RecType: The record type of the history item.

UserName: The owner name.
LINKEDDOCCLICK

RETURNED XML
The following XML is returned for LinkedDocClick:
<GWAPI event ="Li nkedDocd i ck">
<Recl| D>BAAVH43( C?LC] W</ Recl D>

<Fi | eName>C: \ docunments and settings\john still man\nmy docunents\vi sual
studi o proj ect s\ gndev\ bi n\ debug\ Mai | Box\ Att ach\ There ya
go2. doc</ Fi | eNanme>

<Sync>1</ Sync>
<User Nanme>GQUY</ User Nane>
</ GVAPI >

PARAMETERS
ReclID: The record ID for the linked document.

FileName: The path to the linked document.
Sync: 1 or 0 for is the doc synced.

UserName: The last user to use the document (not the owner).

250



Integrating With GoldMine

For information on handling these events, see Handling GoldMine.Ul Events below.

Handling GoldMine.Ul Events

There are four events in the GoldMine.UI class that can be utilized. In order to be
notified of the events, the integrating application must register with GoldMine via
the above commands.

This section will show examples of handling these events in VB and VB.NET. The
method to handle the events may vary depending on the development environment
being used.

NOTIFYCONTROLCOMMAND

NotifyControlCommand is the event that notifies a client application that a button
has been pressed, a checkbox marked, or any other control change/activation event.
Register for this event by calling Regi st er CommandExec.

PARAMETERS

sWindowName: This is a string (BSTR) that contains the nam of the window being
called.

ControlID: along that contains the ID of the control that is notifying,.
CmdID: along that contains the command that is being triggered

HWnd: a long that represents the hWnd of the Parent to the control.

VETOWINDOW

The VetoWindow event is used to notify a client application that a window or dialog
is requesting to be launched. The client application returns a Boolean answer as to
whether or not to allow the window/dialog to launch. Subscribe to this event by
calling Regi st er Vet oW ndowtaunch.

PARAMETERS
sWindowName: a string (BSTR) that contains the name of the window being called.

Delphi does not support functions (a sub that returns a value) in its COM
handler. Within the Vetowindow event handler, Delphi users need to set a
special property within the GoldMine.UI class to indicate whether or not to
veto the window.

Example:
GMODbj.VetoWindowDelphi:=true

EXAMPLE

The following example uses Visual Basic 6.0. After declaring your object using the
WithEvents keyword, Visual Basic will place the name of the object in the drop
down on the upper left of your code window. Select your object from that drop
down to view the list of event handling subs/functions available for that object. For
the VetoWindow event the function will be called Objectname_VetoWindow. For an

251



Integrating With GoldMine

example handling an event in VB.NET using delegate functions, see the
GoldMineShutdown event for the GoldMine. GMSystemEvents class.

Private Function GMbj _Vet oW ndow( ByVal sW ndowNane As String) As Bool ean
I f sWndowNane = " DI ALOGSCHEDULEDEFAULT" Then
DimsResult As String
Dimi Res As |nteger

sResult = GVObj . Execut eCommand( " <GVAPI cal | ="" MsgBox"" ><dat a
name=""Message"">Do you want to bring up the CGol dM ne
schedul e wi ndow?</ dat a><dat a
name=""Styl e"" >4</ dat a></ GVAPI >")

Di m docResult As DOMDocunent 40
Set docResult = New DOVDocunent 40

docResul t. | oadXM. sResul t

Di m el Root As | XMLDOVEI enent
Set el Root = docResult. docunent El enent
Dimatt As | XM.DOWode
Set att = el Root. chil dNodes(0)
If att.Attributes(0).baseName = "code" Then
iRes = att. Text
End |f
If iRes = 6 Then
GMbj _Vet oW ndow = Fal se
El se
GMbj _Vet oW ndow = True
End |f
Set docResult = Not hi ng
Set el Root = Not hi ng
Set att = Not hi ng

End If

End Function

WINDOWUPDOWN

The purpose of the WindowUpDown event is to notify the client application that a
particular window is coming up or shutting down. This does not apply to the main
GoldMine application window. To be notified that GoldMine is shutting down, use
the GoldMineShutdown event in the GoldMine.GMSystemEvents class.

This event is useful for a client application to perform additional processing of
record data after the user has submitted it by pressing OK on a dialog box. For
example, data can be linked to other third party applications in real time.

252



Integrating With GoldMine

PARAMETERS
sName: a string (BSTR) that contains the name of the window being called.

bUp: a Boolean which represents True=Up and False=Down

GMEVENT

GMEvent is an omni-event holder that can provide information about what is
happening in the GoldMine application, and in some cases it can affect an action in
GoldMine.

VARI ANT_BOOL GMEvent ( VARI ANT_BSTR sXM.)
sXML is XML that describes the event - possible events are Ul events:

VetoWindow - same as the 6.7 event - looks like
<GVAPI event =" Vet oW ndow"' >
<W ndowNanme>NAVME_COF_W NDOW HERE</ W ndowNane>
</ GVAPI >
if event returns TRUE to GM then the window will not be launched

WindowUpDown - same as the 6.7 event - returns
<GWAPI event =" W ndowUpDown" >
<W ndowNane>NAME_OF W NDOW HERE</ W ndowNane>
<Up/ >
<W ndowhWhd>399692</ W ndowhWhd>
</ GVAPI >

if the window is being closed, then a Down node will appear instead of the Up node

NotifyControlCommand - same as the 6.7 event - returns
<GVAPI event =" NAME_CF_W NDOW HERE" >
<W ndowNane>Dl ALOGSCHEDULEDEFAULT</ W ndowNare>
<I D>1</ | D>
<Conmand>0</ Command>
<W ndowhWhd>97256300</ W ndowhWhd>
</ GVAPI >
the following are the new events specific to 7.0 and only can be used with the
GMEvent structure

CalendarMonthView_DaySelectedWithActivities - event to show when a user has
clicked a day with activities in the month view

returns
<GWAPI event =" Cal endar Mont hVi ew_DaySel ect edW t hActivities">
<Dat €>20050624</ Dat e>
<Ti med>0</ Ti med>
<Ti nel ess>1</Ti nel ess>
<Event s>0</ Event s>
</ GVAPI >

253



Integrating With GoldMine

Date - is the date clicled in YYYYMMDD format
Timed - the number of timed activities on that day
Timeless - the number of timeless activities
Events - the number of events on that day

CalendarDayActivityHighlighted - for week and day views, shows the details of an
activity that a user has clicked on

<GWVAPI event =" Cal endar DayActi vi t yHi ghl i ght ed" >
<Act vVAccNo>A4032327210$Z7/!'R </ Act vAccNo>
<Cal Recl D>B6AANWA#Y&Gt ; N(] W/</ Cal Recl D>
<Cont act >Dan Gor ent z</ Cont act >

<Cr eat edBy>CUY </ Cr eat edBy>
<User >QUJY </ User >
</ GVAPI >

ActvAccNo - the contact AccountNo that this cal entry belongs to
CalRecID the record id of the calendar entry

Contact - the contact field for the record

CreatedBy - the user that created the record

User - the user its assigned to

VetoCalendarChangeView - can block the view from changing tabs

<GWVAPI event =" Vet oCal endar ChangeVi ew' >
<PrvVi ew>1</ PrvVi ew>
<NewVi ew>2</ Newi ew>

</ GVAPI >

View are enumerated as follows

0 - Day View

1 - Week View

2 - Month

3 - Year

4 - Planner

5 - Outline

6 - PegBoard
PrvView - the view it is changing from
NewView - the view it is changing to
Returning TRUE to this event blocks the view change

CalendarUserSelectionChanged - tells the consumer that the user selection of visible
user events has changed.

<GWAPI event =" Cal endar User Sel ecti onChanged" >

254



Integrating With GoldMine

<User s>@QJY, MASTER</ User s>
<Current Vi ew>0</ Curr ent Vi ew>
</ GVAPI >

Users - a comma delimited list of users that are shown in the calendar.
CurrentView - the current view
VetoCalendarNextClick - can block the user from hitting the next button

returns
<GVAPI event =" Vet oCal endar Next Cl i ck"/ >
returning TRUE to this event keeps the user on the current selection

VetoCalendarPreviousClick - can block the user from hitting the previous button
<GMAPI event =" Vet oCal endar Previ ousC i ck"/>
returning TRUE to this event keeps the user on the current selection

Manipulating Controls Programatically

The GoldMine.Ul class responds to various commands to programmatically
manipulate the controls on GoldMine’s dialog boxes.

To specify the control to change or activate, read the parent window’s handle

(hwnd) and the control’s ID from the GetActiveWindowsList command. The control
ID’s will always stay the same and will be unique only to the scope of the dialog they
exist on. In other words, the GoldMine user drop down box on the Schedule a Call
dialog will always have the same control ID. This control ID can be discovered
during the design phase of your application. Use the control ID as the identifier for
checking the state of the control when reading the control properties from the
GetActiveWindowsList command.

255



Integrating With GoldMine

PRESSBUTTON
Use PressButton to press a button on a known form.

SYNTAX

XML

GetActiveWindowsList returned a window with the following control:

<data name="Button”>
<data name="Enabled”>1</data>
<data name="Visible”>1</data>
<data name="ParentID”>2232874</data>
<data name="hWnd”>987600</data>
<data name="ID”>2060</data>
<data name="Text”>&amp;Activate</data>
</data>

To press this button, the following XML should be sent:

<GMAPI call="PressButton”>
<data name="hWndParent”>2232874</data>
<data name="|D”>2060</data>

</GMAPI>

Note that the hwndParent parameter of the PressButton command
corresponds to the ParentID returned for the control from
GetActiveWindowsList, not hWnd, which is the hWnd of the control.

Also, the ID parameter corresponds to the ID parameter of the control
returned by the GetActiveWindowsList, not the hwnd.

PARAMETERS
hwndParent: the handle to the parent window containing the control. Corresponds

to the ParentID element returned for the control by the
GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by
the GetActiveWindowsList command.

256




Integrating With GoldMine

SETCONTROLTEXT
SetControlText sets the text property of the specified control.

SYNTAX
The Filters and Groups dialog contains the following control, the SQL
field:
<data name="Edit”>
<data name="Enabled”>1</data>
<data name="Visible”>1</data>
<data name="ParentID”>398370</data>
<data name="hWnd”>726100</data>
<data name="ID”>104</data>
XML </data>
To set the text for this control, the following XML should be sent:
<GMAPI call="SetControlText”>
<data name="hWndParent”>398370</data>
<data name="|D”’>104</data>
<data name="Text”>SELECT * FROM contactl</data>
</GMAPI>
PARAMETERS

hwndParent: the handle to the parent window containing the control. Corresponds
to the ParentID element returned for the control by the
GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by
the GetActiveWindowsList command.

Text: the text desired for the control.

257



Integrating With GoldMine

SETCHECKBOX
SetCheckBox sets the value of a check box control.

SYNTAX
A dialog has the following control:
<data name="Button”>
<data name="Enabled”>1</data>
<data name="Visible”>1</data>
<data name="ParentID”>199202</data>
<data name="hWnd”>199212</data>
<data name="ID”>111</data>
<data name="Text”>&amp;Master rights</data>
XML </data>
To set the checkbox, the following XML should be sent:
<GMAPI call="SetCheckBox”>
<data name="hWndParent”>199202</data>
<data name="ID”>111</data>
<data name="Checked”>1</data>
</GMAPI>
PARAMETERS

hwndParent: the handle to the parent window containing the control. Corresponds
to the ParentID element returned for the control by the
GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by
the GetActiveWindowsList command.

Checked: 1 to check the checkbox, 0 to uncheck

258



Integrating With GoldMine

SELECTRADIO

The SelectRadio command allows an application to set a radio button array, or a
single item. While the command allows a single radio button to be set, this is not the
best practice. Doing so results in more than one radio button selected in a group or
radio buttons.

SYNTAX

A dialog has the following two controls:

<data name="Button”>

<data name="Enabled”>1</data>

<data name="Visible”>1</data>

<data name="ParentID”>330708</data>

<data name="hWnd”>134108</data>

<data name="ID”>532</data>

<data name="Text”>&amp;Dark Background</data>
</data>

<data name="Button”>

<data name="Enabled”>1</data>

<data name="Visible”>1</data>

<data name="ParentID”>330708</data>

<data name="hWnd”>134106</data>

<data name="ID”>533</data>

<data name="Text”>&amp;Bright Background</data>
XML </data>

To select the Dark Background radio and unselect the Bright
Background, the following XML should be sent:

<GMAPI call="SelectRadio”>
<data name="RadioButton”>
<data name="hWndParent”>199516</data>
<data name="1D”>532</data>
<data name="Value”>1</data>
</data>
<data name="RadioButton”>
<data name="hWndParent”>199516</data>
<data name="ID”>533</data>
<data name="Value”>0</data>
</data>
</GMAPI>

PARAMETERS

hwndParent: the handle to the parent window containing the control. Corresponds
to the ParentID element returned for the control by the
GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by
the GetActiveWindowsList command.

Value: 1 to select the radio button, 0 to unselect

259



Integrating With GoldMine

SETLISTBOX/SETCOMBOBOX

Use the SetListBox/SetComboBox command(s) to select an item in a listbox on a
GoldMine dialog box. The client application can specify either a text value or an
index. If a text value is used, the value must already exist within the list.

SYNTAX

A dialog has the following control:

<data name="ComboBox”>
<data name="Enabled”>1</data>
<data name="Visible”>1</data>
<data name="ParentID”>330654</data>
<data name="hWnd”>68972</data>
<data name="ID”>537</data>
<data name="Text”>MMM d, yy </data>
</data>

To select a different item in this combobox, use the following XML:

XML Using an Index:

<GMAPI call="SetComboBox”>
<data name="hWndParent”>330654</data>
<data name="ID”>537</data>
<data name="Index”>0</data>

</GMAPI>

Using a Text value:
<GMAPI call="SetComboBox”>
<data name="hWndParent”> 330654</data>
<data name="|1D”>537</data>
<data name="Value”>MMMM dd, yyyy</data>
</GMAPI>

SetComboBox and SetListBox have been grouped together in this
document because they share the same parameters and functionality for
their respective control. However, SetComboBox should only be used for
comboboxes and SetListBox for listboxes.

PARAMETERS

hwndParent: the handle to the parent window containing the control. Corresponds
to the ParentID element returned for the control by the
GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by
the GetActiveWindowsList command.

Value: the TEXT value to select in the combobox or listbox. The value must already
exist in the list of the control.

OR

Index: the index number of the item to be selected in the combo box or list box.

260



Integrating With GoldMine

SELECTTAB

Use SelectTab to select a particular tab on a dialog box. This command does not
select the tabs on the contact record. Use the SetRoTabX command for that purpose.

SYNTAX

A dialog has the following control:

<data name="SysTabControl32”>
<data name="Enabled”>1</data>
<data name="Visible”>1</data>
<data name="ParentID”>789580</data>
<data name="hWnd”>330824</data>
<data name="1D"”>12320</data>

</data>
XML

To select the tab with index of 1:

<GMAPI call="SelectTab”>
<data name="hWndParent”>789580</data>
<data name="|D”>12320</data>
<data name="Index”>1</data>

</GMAPI>

The SelectTab command may not function as expected on all tabs within
GoldMine. Due to the way some dialog boxes were developed, changing
the tab with the SelectTab command may not cause the correct controls to
be displayed on the desired tab. Always test the SelectTab command on
the dialog box you wish to execute it for during development of your
application to verify it correctly switches the tab.

PARAMETERS

hwndParent: the handle to the parent window containing the control. Corresponds
to the ParentID element returned for the control by the
GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by
the GetActiveWindowsList command.

Index: the index number of the tab to be selected.

261



Integrating With GoldMine

ENABLECTRL
The EnableCtrl command allows the programmer to enable or disable any control.

SYNTAX
A dialog has the following control:
<data name="Button”>
<data name="Enabled”>1</data>
<data name="Visible”>1</data>
<data name="ParentID”>789580</data>
<data name="hWnd”>1117262</data>
<data name="ID”>1</data>
<data name="Text”>0OK</data>
XML
</data>
To disable the button:
<GMAPI call="EnableCtr|”>
<data name="hWndParent”> 789580</data>
<data name="|D”>1</data>
<data name="Enable”>0</data>
</GMAPI>
PARAMETERS

hwndParent: the handle to the parent window containing the control. Corresponds
to the ParentID element returned for the control by the
GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by
the GetActiveWindowsList command.

Enable: setto 1 to enable the control, 0 to disable.

Executing a Menu Command

The MenuCommand function allows the programmatic execution of a menu item, as
if the user has clicked the item in the GoldMine menu.

SYNTAX
<GMAPI call="MenuCommand" >FileNewRecord</GMAPI>
OR
XML <GMAPI call="MenuCommand”>
<data name="MenuCommand”>FileNewRecord</data>
</GMAPI>

262



Integrating With GoldMine

MenuCommand accepts one parameter, MenuCommand. This parameter can be any
of the following menu commands. The command name is descriptive and indicates
which menu item it corresponds to:

FileNewRecord

FileNewRecordToEXxistingCompany

FileNewRecordAndOrgChart

FileNewRecordToExistingOrgChart

FileNewRecordByType

FileOpenDatabase

FilePrint1Report

FileNewDatabase

FileMaintainDatabases

FileBackupDatabases

FileRestoreDatabases

FilePrintReports

FileSetupPrinter

SynchronizationOneButtonSync

SynchronizationWizard

GoldSyncAdministrationCenter SynchronizeWithOutlook SynchronizeWithPilot
SynchronizeWithWindowsCEPDA FileCopyMoveRecords ConfigureUsersSettings
ConfigureUserGroups ConfigureResources ConfigureRecordType
ConfigureCustomScreens ConfigureCustomFields ConfigureHTMLTab
ConfigureSyncSettings ConfigureLicenseManager ConfigureMyGoldMine
LogAway LogInAnotherUser LogInServiceSupport
Exit EditUndo EditCut

EditCopy EditPaste EditCopyContactDetails
EditContact DeleteContact Record-related Settings

Contact Details

RecordDetailsOrganization

RecordDetailsSummary

RecordDetailsFields

RecordDetailsHTMLTab

RecordDetailsNotes

RecordDetailsContacts

RecordDetailsDetails

RecordDetailsReferrals

RecordDetailsPending

RecordDetailsHistory

RecordDetailsLinks

RecordDetailsMembers

RecordDetailsTracks

RecordDetailsOpptys

RecordDetailsProjects

RecordDetailsTickets

RecordDetailsResize

TimerStart TimerStop TimerReset
TimerRestart EditToolbars EditCustomTemplates
EditPreferences ViewMyGoldMine ViewNewContactWindow
ViewContactGroups ViewCalendar ViewActivityList

ViewEmailCenter

ViewEmailWaitingOnline

ViewlnfoCenter

ViewProjects ViewPersonalRolodex ViewLiteratureFulfilment
SalesToolsOpportunities SalesToolsScripts AnalysisSales
AnalysisStatistical AnalysisForecast AnalysisGraphical
AnalysisLeads AnalysisQuota ViewGoldMineLogs
ViewSyncRetrievalLogs LookupCompany LookupContact
LookupLastName LookupPhone LookupZIPCode
LookupCity LookupState LookupCountry
LoookupAccountNo LookupKeyl LookupKey2
LookupKey3 LookupKey4 LookupKey5

263




Integrating With GoldMine

LookupDetailRecords

LookupEmailAddress

LookupAdditionalContName

LookupFilters

LookupSQLQueries

TextSearchPrimaryFields

TextSearchNotes TextSearchAllFields TextSearchFieldsBelowTabs

GotoNextRecord GotoPreviousRecord GotoCycleLastViewedRecord
S

GotolLastRecord GotoRecordNumber GotoFirstRecord

DialPhonel DialPhone2 GotolnternetSearch

DialFax RedialLastNumber DialPhone3

IncomingCall ContactinsertNote ManualDial

WriteMemoToContact WriteFAXtoContact WriteLetterToContact

ContactWriteCustomizeTemplates

WriteCustomizeTemplates

WriteMailMerge

EmailOutlookMessageToContact EmailPagerMessageToContact EmalMessageToContact
EmailCustomizeTemplates ContactTakePhoneMessage EmailMerge
ContactBrowseWebStie LinkFile ContactAssignProcess
ScheduleCall ScheduleNextAction AddDetail
ScheduleLiteratureRequest ScheduleForecastedSale ScheduleAppointment
ScheduleEvent ScheduleTodo ScheduleOtherAction
CompleteScheduledCall CompleteUnscheduledOutgoingCall | ScheduleGoldMineEmail
CompleteMessage CompleteNextAction CompleteUnscheduledincomi
ngCall
CompleteSale CompleteOtherAction CompleteAppointment
CompleteToDo CompleteLetterMemo CompleteEvent

CompletePendingActivities

AutomatedProcessesExecute

CompleteLiteratureRequest

AutomatedProcessesSetup ServerAgenstStart AutomatedProcessesRemov
eTrack
Actimport Outlookimport ServerAgentsAdministrator
ExportContactRecords ImportZIPCodes ImportContactRecords
XMLImport XMLExport RunQSwW
ICALEXxport CalPublish ICALImport
ToolsCleanupDOSNotes ToolsOptimizeOrgChartAccess PublishBusyTime
ToolsTerritoryRealignment MergePurgeWizard ToolsGlobalReplaceWizard
MergeTaggedRecords ToolsDeleteRecordsWizard MergeVisibleRecords
ToolsStrategicSolutions ToolsBDEAdministrator ToolsSyncSpy
WindowTile WindowTileWide ToolsSystemPerformance
WindowArrangelcons WindowCloseAll WindowCascade
WindowStatusBar WindowTaskBar WindowToolBar
HelpHelpTopics HelpReleaseNotes WindowBackgroundSettings
HelpNewsgroups HelpUpdateGoldMine HelpGoldMineWebSite

264




Integrating With GoldMine

CampaignManager

LeadCenter

HelpAbout

WeblmportAdmin

RETURNED XML

The MenuCommand function returns after the menu command is executed. It does
not wait for any events on the resulting window before returning. The returned
XML for a successful call will be:

<GVAPI cal | =" MenuComand" ><st at us code="1">The conmmand was
execut ed. </ st at us></ GVAP| >

In the event that there is a modal window active in the GoldMine user-interface, the
COM Server cannot launch another window (as would be the case if attempting to
launch a menu item within the interface). When that occurs, the following XML is
returned to indicate a failure:

<GVAPI cal | =" MenuConmand" >

<status code="0">Access is denied. </status>
</ GVAPI >

265



Integrating With GoldMine

Opening a Mail Record

The OpenMailRecord function opens a mail record in the mail center when the
RecID of the mail item is passed.

SYNTAX
To open a mail record:
XML <GMAPI call="OpenMailRecord”>
<data name="Rec|D”> 789580</data>
</GMAPI>
PARAMETERS

RecID: the record ID of the mail item.

RETURNED XML

The OpenMailRecord function returns after the command is executed. The returned
XML for a successful call will be:
<GWAPI cal | =" OpenMai | Recor d"><st atus code="1">The comand was
execut ed. </ st at us></ GVAPI >
In the event that the mail record is already open, the following XML is returned to
indicate a failure:
<GWAPI cal | =" OpenMnai | Recor d" >

<status code="-1">Already open. </status>
</ GVAPI >

In the event that the system cannot open the mail record, the following XML is
returned to indicate a failure:
<GWAPI cal | =" OpenMai | Recor d" >

<status code="0">Fail ure. </ st at us>
</ GVAPI >

GoldMine.RecObj Class

The GoldMine.RecObj class contains only events. These events notify the client
application when the record object has changed, when a field has changed on the
contact record, or when the tab selected on the record object has changed. It is not
necessary to subscribe to these events, just implement the event handlers.

RECORDOBJECTHASCHANGED

The RecordObjectHasChanged event indicates when the contact displayed in
GoldMine has changed to a different contact. This does not indicate data changes.
This event is the equivalent of setting the LinkMode in Visual Basic to vbLinkNotify.

PARAMETERS
sCurrentRecord: a string that contains the AccountNo of the current record.

266



Integrating With GoldMine

RECORDFIELDHASUPDATED

The RecordFieldHasUpdated event indicates when the value of a field in contact1 or
contact? for the current contact has been updated. This event does NOT notify when
an Email Address or Web Site has changed.

PARAMETERS
sField: a string that contains the fieldname of the updated field.

sLabel: the local label (or global if no local label is specified) of the field.

ContactTablelD: the ID number of the contact table. Will be 1 for contactl and 2 for
contact2.

RECORDTABHASCHANGED

The RecordTabHasChanged event indicates when the user in GoldMine has selected
a different tab at the bottom of the contact record screen.

PARAMETERS
sCurrentTab: the numeric representation of the tab selected.

GoldMine.GMSystemEvents Class

The GoldMine.GMSystemEvents class contains one event, GoldMineShutDown,
indicating when the GoldMine application is shutting down. This gives the client
application an opportunity to clean up and shut down as well.

GOLDMINESHUTDOWN

The GoldMineShutDown event indicates when the GoldMine application is shutting
down. It has no parameters. Following is an example of implementing the
GoldMineShutDown event in VB.NET using a delegate function. For an example

implementing an event handler in Visual Basic 6.0, see the VetoWindow event for
the GoldMine.UI class on page 251.

Private Sub GvBhut down()
MsgBox(" Gol dM ne has cl osed", MsgBoxStyle.Information, "XM. APl ")
End Sub

Private Function CreateGVEvent Handl er () As Bool ean
Try
"Here we try to setup an eventhandl er for gol dm ne shutdown
"if we set this up before we're logged in it |aunches the api
"and nucks things up, here we create the varriable, and
‘assign it an event

267



Integrating With GoldMine

Di m GvEvent As New Gol dM ne. GVByst enEvent s
AddHandl er GVEvent. Gol dM neShut Down, AddressOf GVShut down
Catch ex As Exception
Return Fal se
End Try
Return True
End Function

Business Logic Methods

GoldMine introduces Business Logic, a concept to simplify and streamline product
integration with GoldMine. Business Logic transactions wrap commonly used
procedures into a single call. For example, to attach a new detail to a record, you
simply execute the WriteDetail function.

Business Logic Functions and Name/Value Pairs

To make these Business Logic methods useful, developers need a mechanism for
passing multiple parameters to the various methods. GoldMine provides a set of
functions to control Name/Value containers in the GMXS32.DLL, described in
Chapter 3. Alternatively, all of the business logic functions are accessible via the
GoldMine XML APIL. The XML API uses all of the same business logic function
names and data names (Name/Value pairs).

268



Integrating With GoldMine

This chapter describes the Business Logic methods available. These methods may be
called from the GMW_Execute function (GMXS32.DLL) or via the GoldMine XML
API (GMXMLAPILDLL).

Controlling Database Session Handling

The SetSessionHandling function controls the way GoldMine handles database
sessions. The default, the safest method, is to open and close sessions for each
request. This can be changed to increase performance to keep sessions open. The
function accepts one name/value pair, KeepOpen. Its possible values are 1 or 0. The
function returns one name/value pair, OldState, with possible values of 1 or 0, so
you know what was previously set prior to your change. Finally, the function
returns a status of either 0 on failure, or 1 on success. This function applies only to
the GMXS32.DLL.

269



Integrating With GoldMine

Creating or Updating a Contact Record

WriteContact creates or updates a contact record. If RecID is passed as null, then a
record will be created. Otherwise, the record will be updated. You may also create a
new contact record with a RecID you provide. This function will respect record
curtaining and will not update areas of the contact record that the logged-in user
does not have permission to change. Contacts created through this function will
have the Automated Process marked to be attached to new records.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

RecID is the record ID of the record to update. If null, a record will be created, unless
the ExternRecID or ExternAccNo name/value pairs are included.

OPTIONAL NAME/VALUE PAIRS
Any valid Contactl or Contact2 field.

SPECIAL NAME/VALUE PAIRS

WriteContact Special NV Pairs

Name Description

Email E-mail address profile value. Additional e-mail addresses may be added to the
contact record by including this name/value pair with an existing RecID. Cannot
update any e-mail addresses with this function. See UpdateEmailAddress. Only
one address will be marked as primary. If additional addresses are added
through this function, they will not be primary unless the next name/value pair is
set.

PrimaryEmail Indicates to mark the specified e-mail address as primary. Set to 1 to mark
primary.

WebsSite Web site detail value. Additional Web sites may be added to the contact record
by including this name/value pair with an existing RecID. Cannot update any
Web sites with this function. See UpdateWebSite.

NonUSAPhone | International phone format is used if NonUSAPhone = 1, Default is 0.

WebUserName | Web username to assign to this contact. For details, see “ContactLogin.”

WebPassword | Web password to assign to this contact. For details, see “ContactLogin.”

ExternRecID User-supplied ReclID to be used for a new record. RecID name/value pair must
be empty to use this functionality.

ExternAccNo User-supplied AccountNo to be used for a new record. ReclD name/value pair
must be empty to use this functionality.

270




Integrating With GoldMine

OUTPUT NAME/VALUE PAIRS
WriteContact Output NV

Record Description
RecID If new record created.
AccountNo AccountNo of the record

WRITECONTACT ERROR CODES

WriteContact Error Codes

Code Description

1 Success

0 General Failure

-1 Incomplete request to create based on external ReclD
-2 Could not create a new record

-3 Could not create a new record based on external RecID.
-4 Could not commit to disk

-5 No access or could not lock record

-6 Record does not exist.

-7 External ReclID already exists on this system.

Updating an E-mail Address

UpdateEmailAddress is used to update the value of an existing e-mail address detail

record.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS
UpdateEmailAddress Required NV Pairs

Name Description
RecID RecID of the e-mail record to be modified
NewAddress New address to write

271




Integrating With GoldMine

OPTIONAL NAME/VALUE PAIRS
UpdateEmailAddress Optional NV Pairs

Name Description

Accountno Accountno of the contact the e-mail address is associated with.
MIME Set to “1” to use MIME when sending to this address.

RTF Setto “1” to use RTF when sending to this address.

Primary Set to “1” to mark this updated e-mail address as primary.
Wrap Set to “1” to wrap lines when sending to this address.

Updating a Web Site Record

The UpdateWebSite function is used to update the value of a Web Site detail record.

GOLDMINE API VERSION: 5.50.10111

NAME/VALUE PAIRS
UpdateWebSite NV Pairs

Name Description

RecIlD Web site record ReclD—required

NewsSite New Web site value to write—required

Primary Set to “1” to mark this Web site as the primary Web site for the contact record

Updating Notes of a Primary Contact Record

WriteContactNotes updates the Notes of a primary contact record and appends the
proper header information to the top of the Note. If both AccountNo and RecID are
passed, only AccountNo will be used. The Note header will use the current
date/time and default to the logged-in user name.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

WriteContactNotes Required NV Pairs

Name Description

Notes Note text to add

AccountNo | AccountNo of the Contactl record to which to add notes. Not required if RecID is
used.

AccountNo | AccountNo of the Contactl record to which to add notes. Not required if RecID is
used.

RecIlD ReclD of the contactl record to which to add notes. Not required if AccountNo is used.

272




Integrating With GoldMine

OPTIONAL NAME/VALUE PAIRS
UserID is the UserID used in the note header.

OUTPUT NAME/VALUE PAIRS
None.

Creating or Updating an Additional Contact Record

WriteOtherContact creates or updates an additional contact record. If RecID is null,
then a record will be created; otherwise, the record will be updated. When RecID is
passed as null, an AccountNo should be passed; otherwise, an unlinked record will
be created. In addition, a new additional contact may be created using a unique,
user-supplied RecID. If the logged-in user does not have master rights and the
contact record associated with the additional contact record is curtained, then no
new additional contact records or modifications will be allowed.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS
None.

OPTIONAL NAME/VALUE PAIRS
WriteOther ContactNotes Optional NV Pairs

Name Description

RecIlD ReclD of the record to update. If null, a record will be created.

ExternRecID User-supplied ReclD to be used for a new additional contact. The ReclID and
ExternRecID name/value pairs are mutually exclusive. If the ReclD pair is
supplied, this pair will be ignored.

AccountNo AccountNo of linked Contact1 record

Contact Contact name

Title Title

Ref Reference

Dear Salutation

Phone Phone number

Fax Fax number

Ext Extension

Address1 Address Line 1

Address2 Address Line 2

Address3 Address Line 3

City City

State State

Zip ZIP Code

273



Integrating With GoldMine

Name Description
Country Country

Notes Notes

LinkAcct Link Account ReclD

SPECIAL NAME/VALUE PAIRS

WriteOtherContact Special Name/Value Pairs

Name Description

Email E-mail address of the additional contact
NonUSAPhone Set to 1 for a nonUSA phone format

UseMergeCodes Set to 1 if you want to set the Use Merge Codes option
MergeCodes Merge codes

ERROR CODES

WriteContact Error Codes

Code Description

1 Success

0 General Failure

-1 It will be a duplicate

-2 Couldn'’t create external record

-3 Couldn’t find or lock the record

-4 Couldn’t write to the database

-5 No access to the contact linked to this record

OUTPUT NAME/VALUE PAIRS
RecID returns the new RecNo or ReclD if a new record was created.

Creating or Updating a Detail Record

WriteDetail creates or updates a detail record. If RecID is null, then a record will be
created; otherwise, the record will be updated. When a RecID is passed as null to
create a record, an AccountNo should be passed; otherwise, an unlinked record will
be created. In addition, a new detail record may be created using a unique, user-
supplied ReclD. If the logged-in user does not have master rights and the contact
record associated with the detail record is curtained, then no new detail records or
modifications will be allowed.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS
Detail is the name of the detail.

274



Integrating With GoldMine

OPTIONAL NAME/VALUE PAIRS
WriteDetail Optional NV Pairs

Name Description
RecIlD ReclD of the record to update. If null, a record will be created.
ExternRecID A user-supplied ReclID to be used for a new detail record. The RecID and

ExternRecID name/value pairs are mutually exclusive. If the ReclID pair is
supplied, this pair will be ignored.

AccountNo AccountNo of linked Contactl record.
Ref Value of the detail being created or updated.
Notes Notes for the detail record.

SPECIAL NAME/VALUE PAIRS
UField 1-Ufield 8 correspond to the extended detail fields; that is:

UField1 UField5
UField2 UField6
UField3 UField7
UField4 UField8

OUTPUT NAME/VALUE PAIRS
RecID returns the new RecNo if a record was created.

ERROR CODES
WriteDetailError Codes

Name Description

1 Success

0 General Failure

-1 It will be a duplicate

-2 Couldn't create external record

-3 Couldn't find or lock the record

-4 Couldn’t write to the database

-5 No access to the contact linked to this record

Creating or Updating a Linked Document

WriteLinkedDoc creates or updates a linked document record. If RecID is null, then
a record will be created; otherwise, the record will be updated. When RecID is
passed as null, an AccountNo should be passed; otherwise, an unlinked record will
be created.

275



Integrating With GoldMine

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS
RecID is the RecID of the record to update. If null, a record will be created.

OPTIONAL NAME/VALUE PAIRS
Optional NV Pairs

Name Description

AccountNo AccountNo of linked Contactl record.
FileName Full path and filename.

Ref Title of the document.

Notes Notes

SPECIAL NAME/VALUE PAIRS
SyncFile synchronizes the file with remote sites if set to 1.

OUTPUT NAME/VALUE PAIRS
RecID returns the new RecNo if a record was created.

ERROR CODES
These error codes were added in GoldMine API Version: 5.70.20222

WriteLinkedDoc Error Codes

Name Description

1 Success

0 General Failure

-1 Contact not found

-2 Access denied

-3 Could not add the linked document

-4 Requested linked document does not exist

-5 Could not write the linked document

-6 The given accountno does not match the existing one

Creating or Updating a Referral

WriteReferral creates or updates a referral from one contact record to another.
GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS
ReclD is the RecID of the record to update. If null, a record will be created.

276



Integrating With GoldMine

OPTIONAL NAME/VALUE PAIRS
WriteReferral Optional NV Pairs

Name Description

FromAccNo AccountNo of the ‘From’ referral.

ToAccNo AccountNo of the ‘To’ referral.

FromRef Reference line for the ‘From’ record.

ToRef Reference line for the ‘To’ record.

Notes Notes

AppendNotes Appends Notes with a time stamp. You must pass a valid ReclID.

SPECIAL NAME/VALUE PAIRS

OppSummary is a 12-bit flag of opportunity summary check boxes in the Referrals
properties. This is a sequence of twelve 1s or Os.

OUTPUT NAME/VALUE PAIRS
RecID returns the new RecNo if a Record was created.

Creating or Updating Activities

WriteSchedule creates or updates a scheduled activity record. If RecID is null, then a
record will be created; otherwise, the record will be updated. When RecID is passed
as null, an AccountNo should be passed; otherwise, an unlinked record will be
created.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS
RecID is the RecID of the record to update. If null, a record will be created.

Name Description

AccountNo AccountNo of linked Contact1 record

RecType RecType. For a list of valid RecTypes, see the table structures for CAL.

UserlD User name of activity

Contact Contact name

Ref Reference: line

Notes Notes

ActvCode Activity code

OnDate Date of activity (Required for scheduling recurring activities when using
gm6s32.dll — GoldMine 6.0)

OnTime Time of activity (Required for scheduling recurring activities when using
gm6s32.dll — GoldMine 6.0)

Duration Duration of activity

277



Integrating With GoldMine

Name Description
Alarm If set to 1, an alarm will set for the specified user. Default is 0.
AlarmDate Date of alarm. Must set Alarm to 1 to use.
AlarmTime Time of alarm. Must set Alarm to 1 to use.
RSVP If set to 1, the activity will be sent with an RSVP. Default is 0.
Private If set to 1, the activity will be marked as private. Default is 0.
Notify If set to 1, the scheduled user will receive a notification. Default is O.
Amount Sale amount. Only used when RecType = S
ProbSale Probability of sale. Only used when RecType =S
UnitsSale Number of units in sale. Only used when RecType =S
ccUsers List of additional users to schedule the activity for
bccUsers List of users to inform about the activity througha GoldMine e-mail.
Resources List of resources to reserve for this activity.
RecurType Use only for versions of GoldMine earlier than 6.0. For recurring activities.
Specify one of the following to indicate how the activity should be repeated:
Value | Description
1070 Daily
1071 Weekly
1072 Bi-weekly
1073 Monthly
1074 Quarterly
1075 Yearly
1076 Every n days. Also use RecurNDays nv
pair.
1080 First. Also use RecurOnDays nv pair. EX.
Schedule on the first Monday of every
month.
1081 Second. Also use RecurOnDays nv pair.
1082 Third. Also use RecurOnDays nv pair.
1083 Fourth. Also use RecurOnDays nv pair.
1084 Last. Also use RecurOnDays nv pair.
RecurNDays Use only for versions of GoldMine earlier than 6.0. Recur every x days.
Used when RecurType is set to 1076.
RecurOnDay Use only for versions of GoldMine earlier than 6.0.

Used when RecurType is set to 1080-1084. For example, you wish the
activity to be schedule for the first Monday of every month, then RecurType
would be set to 1080 and RecurOnDay would be set to 1092.

Value | Description

1091 Sunday

1092 Monday

1093 Tuesday

1094 Wednesday

1095 Thursday

1096 Friday

1097 Saturday




Integrating With GoldMine

Name Description
RecurSkipWeekend | Use only for versions of GoldMine earlier than 6.0.
Set to 1 (default) if the activities should not be scheduled on weekends,
should the scheduling pattern call for it to land on one. Otherwise 0.
RecurFromDate Use only for versions of GoldMine earlier than 6.0.
The date to begin scheduling the activities.
RecurToDate Use only for versions of GoldMine earlier than 6.0.
The date to end the scheduled activities.

GOLDMINE 6.0 NV PAIRS

The following WriteSchedule NV pairs are specific to GoldMine versions 6.0 and
greater. They apply to scheduling recurring activities. The NV pairs for the
previous versions of GoldMine are still valid, though in order to implement
extended recurrence patterns, these new pairs need to be used in lieu of the previous
pairs. If your application will only be used on GoldMine 6.0 systems, it is
recommended to use the newer recurrence NV pairs listed below.

Optional WriteSchedule NV Pairs

Name

Description

RecurType

For recurring activities. Specify one of the following to indicate how the
activity should be repeated:
Value | Description
Hourly
Daily
Weekly
Monthly
Yearly

O b wWNPEF

RecurFormat

Set to 1 (default) to specify an UNTIL recurrence rule (defined by a start
date/time and end date/time) and is used in conjunction with RecurToDate.
Set to 2 to specify a COUNT recurrence rule (defined by a start date/time
and an integer representing the number of occurrences) and is used with
RecurCount.

RecurCount

Represents the number of occurrences at which to bound the range (Used
when RecurFormat = 2, omit if RecurFormat = 1).

RecurToDate &
RecurToTime

Use to specify the end of the date and time range for scheduling recurring
activities. (Used when RecurFormat = 1, omit if RecurFormat = 2)

Recurlnterval

Represents how often the recurrence rule repeats

279




Integrating With GoldMine

Name Description

RecurOnDay The day(s) when the recurrence occurs:
The following seven values can be used when RecurType equals 3
through 5. The values can be combined using the bitwise AND operator.

Value | Description
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday
The following values should only be used when RecurType is equal to
monthly (4) or yearly (5).
Value | Description
200 Weekday
201 Weekend Day
202 Day
RecurMonthDay The day of the month the activity should occur. Values 1 through 31 are

valid. Should only be used if RecurType is monthly (4) or yearly (5). If
RecurMonthDay is used, then RecurPos is ignored.

RecurPos Specifies if the activity should be scheduled on the first, second, third,
fourth or fifth day specified in RecurOnDay (as in, first Monday of each
month, etc). Used only when RecurType is monthly (4) or yearly (5). If
RecurMonthDay is set also, this value will be ignored.

RecurMonth Specifies which month the recurring activity is to be scheduled in when the
RecurType is set to monthly (5). Valid values are 1 through 12 and
correspond to months respectively (1 = January).

RecurSkipweekend Skip weekends when scheduling recurring activities. Valid values or 1
(default) or 0. Use when RecurType is daily (2), monthly (4), or yearly (5).

RecurSkipNon Skip hours that are not designated as part of the workday (ex: 5pm through

WorkdayHours 8 am). Valid values are 1 (default) or 0. Use when RecurType is set to
hourly (1).

OUTPUT NAME/VALUE PAIRS
RecID returns the new RecID if a record was created.

280



Integrating With GoldMine

ERROR CODES

These WriteSchedule error codes were added in GoldMine API Version: 6.0.21021
WriteSchedule Error Codes

Name Description

1 Success

0 General Failure

-10 Ondate > RecurEndDate

-11 No Ondate specified

-12 No RecurToTime (or RecurCount)

-13 No weekdays selected in the weekly pattern
-14 Not enough NV Pairs specified

Creating or Updating a History Record

WriteHistory creates or updates a history record, or completes a scheduled activity
record. If RecID is null, then a record will be created; otherwise, the record will be
updated. When RecID is passed as null, an AccountNo should be passed; otherwise,
an unlinked record will be created. To complete a scheduled activity, you must pass

CalRecID.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS
ReclD is the RecID of the record to update. If null, a record will be created.

WRITEHISTORY OPTIONAL NAME/VALUE PAIRS
WriteHistory Optional NV Pairs

Name Description

AccountNo AccountNo of linked Contactl record.
RecType RecType. For a list of valid RecTypes, see the table structures for CONTHIST.
UserlD User name of activity

Contact Contact name

Ref Reference line

Notes Notes

ActvCode Activity code

ResultCode Result code

OnDate Date of activity

OnTime Time of activity

Duration Duration of activity

281




Integrating With GoldMine

WRITE HISTORY SPECIAL NAME/VALUE PAIRS
WriteHistory Special NV Pairs

Name Description
CalRecID ReclD of the scheduled activity (Cal table).
Success If set to 1, the activity was successful. Default is 1.
Private If set to 1, the activity is marked as private.
Default is O.
RSVP If setto 1, an RSVP is scheduled. Default is O.
Link If Set to 1 indicates that it is linked to the contact record specified in AccountNo.
Amount Sales amount. Used where RecType = S
ProbSale Probability of sale. Used where RecType =S
UnitsSale Number of units in sale. Used where RecType = S

OUTPUT NAME/VALUE PAIRS
RecID returns the new RecNo if a record was created.

Attaching an Automated Process

AttachTrack attaches an automated process to a contact record.
GOLDMINE API VERSION: 5.00.041

ATTACHTRACK REQUIRED NAME/VALUE PAIRS
Required NV Pairs

Name Description

AccountNo AccountNo of the contact record (Contactl) to which to attach the track.
Track

UserlD

OUTPUT NAME/VALUE PAIRS
RecID returns the new RecNo if a record was created.

Executing an SQL Query

SQLStream executes a SQL query and returns the data in a DataStream. For details,
see “Retrieving Data with DataStream” on page 58.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS
SQL is the SQL statement to execute.

282



Integrating With GoldMine

OPTIONAL NAME/VALUE PAIRS
SQLStream Optional NV Pairs

Name Description

Filter Xbase filter expression.

FIdDIm Field delimiter. Defaults to CR.

RecDIm Record delimiter. Defaults to LF.

StartRec Starting record. Defaults to 1.

GetRecs Maximum records to return. Defaults to 100.

MaxBufSize Maximum buffer size. Defaults to 32k.

Raw (XML Indicates the format the data should be returned as. The default (“0”) puts the

API ONLY) data into XML format. Setting Raw to “1” returns the data stream in the old
return packet format, as described below.

OUTPUT NAME/VALUE PAIRS
Output is the return DataStream.

The packet header (the first 12 characters of the Output NV pair) record consists of
two sections:

First byte can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another
SQLStream call (be sure to set the StartRec nv pair to one more than the number of
records returned in the first call)

3 indicates the end-of-file (EOF)
4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in
the packet.

If the Raw parameter is set to 0 using the GoldMine XML API, the packet will be
XML formatted. See the XML Return Packet for information on interpreting this
data format.

Note: If the return DataStream is too large for the specified buffer size, SQLStream
returns a value of -5. When the buffer in increased to an adequate size, SQLStream
will return the data in a DataStream. The practical upper limit for buffer size is 2 MB.
If your query returns data in excess of 2 MB, we recommend using DS_Query and
DS_Fetch rather than SQLStream for better performance

Creating a Contact Group

The CreateContactGroup function is used to create an empty contact group.
Members are then added through the AddContactGrpMembers function. For details,
see “Adding Contacts to a Contact Group” on page 284.

283



Integrating With GoldMine

GOLDMINE API VERSION: 5.70.20222

REQUIRED NAME/VALUE PAIRS
GroupName is the name of the group to be created.

OPTIONAL NAME/VALUE PAIRS

CreateContactGroupOptional NV Pairs

Name Description

GroupCode | Group code.

UserName | Group owner. The currently logged in user will be used if empty.
SyncGroup | 1 (default) if the group should be synced. Otherwise 0.

OUTPUT NAME/VALUE PAIRS

CreateContactGroup Output NV Pairs

Name

Description

GroupNo

Group number of the created group. Use this to add members through the
AddContactGrpMembers function.

RETURN CODES

CreateContactGroup Return Codes

Code Description

1 Success

0 General Failure

-1 Missing group name

-2 Could not create the group

Adding Contacts to a Contact Group

Once a contact group is created with CreateContactGroup, the
AddContactGrpMembers function is used to add contacts to that group. In addition,
this function can be used to add members to existing groups.

GOLDMINE API VERSION: 5.70.20222

REQUIRED NAME/VALUE PAIRS
AddContactGrpMembers Optional NV Pairs

Name Description
GroupNo Group number.
Members Multi value NV pair containing multiple NV pair containers. Each container

the child containers.

284

stores information for each contact to add to the group. See below for details of




Integrating With GoldMine

MEMBERS NV PAIR CHILD CONTAINER NAME/VALUE PAIRS
Members NV Pairs

Name Description

Accountno Accountno of the member to add
Reference Reference of the member.

Sort Sort value for the member

MEMBERS NV PAIR CHILD CONTAINER OUTPUT NAME/VALUE PAIRS
Members Output NV Pairs

Name Description

MemberNo Recno/recid of the member record

OUTPUT NAME/VALUE PAIRS (PARENT CONTAINER)
AddContactGrpMembers Output NV Pairs

Name Description

MembersAdded Number of members added.

RETURN CODES

Note that on the first instance the function encounters an error adding a member, it
will stop adding members and not continue through the list of requested members.

AddContactGrpMembers Return Codes

Code Description

1 Success

0 General Failure

-1 Missing Group Number
-2 Unable to find group

-3 Cannot add member
-4 No members added

Using AddContactGrpMembers

Below are the steps you should take in order to populate the Members Name/ Value
pair correctly.

1. Create parent container using GMW_NV_Create.
2. Populate GroupNo Name/Value pair in parent container.

3. Create another container using GMW_NV_Create to serve as the child
container (assign to a different long variable).

285



Integrating With GoldMine

4. Populate any common Name/Value pairs in the child container (i.e.
Reference).

5. Loop through the contacts you want to add and do the following;:
e Assign Accountno name/value pair in the child container.

e Assign any other optional name/value pairs in the child container (i.e.
reference or sort).

6. Use the GMW_NV_AppendNvValue function to copy the contents of the
child container to a new container within the Members name/value pair of
the parent container:

GWV NV_AppendNvVal ue (I Parent GV, “Menbers”, | Chil dGWV)
7. Execute WriteSchedule.

Reading a Record

ReadRecord reads a record from the specified table, based on RecID. When the
TableName=Contact1, all Contact?2 fields will also be returned. Any record that is
inaccessible through GoldMine due to record curtaining will not be returned. Any
fields inaccessible through GoldMine due to field-level access restrictions will not be
returned.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS
ReadRecord Required NV Pairs

Name Description
TableName GoldMine table to read.
RecID RecID of the Contactl record to return.

OPTIONAL NAME/VALUE PAIRS

Address Block returns the address as one block of text instead of in separate fields
for Address1, Address2, City, State, and so on, when equal to 1.

SPECIAL NVS
AccountNo can be used to find the record instead of ReclID if TableName=Contact1.

OUTPUT NAME/VALUE PAIRS
All field values for the specified record.

286



Integrating With GoldMine

ReadRecord Output NV Pairs

Name Description
Email Returns the primary e-mail address if TableName=Contact1.
Website Website profile will return if TableName=Contact1.

CurtainingState | Indicates level of curtaining for returned record. 0 — none, 1 — partial, 2- full. Use
this to save a call to IsContactCurtained.

RETURN CODES
ReadRecord Return Codes

Code Description

1 Success

0 General Failure

-1 No access to the record
-2 Record not found

-3 Invalid parameters

Reading a Contactl or Contact2 Record

ReadContact reads a contact record from Contactl and Contact2. Any record that is
inaccessible through GoldMine due to record curtaining will not be returned. Any
fields inaccessible through GoldMine due to field level access restrictions will not be
returned.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS
RecID is the RecID of the Contactl record to return.

OPTIONAL NAME/VALUE PAIRS

AddressBlock returns the address as one block of text instead of in separate fields for
Addressl, Address2, City, State, and so on, when equal to 1.

SPECIAL NVS
AccountNo can be used to find the record instead of ReclID if TableName=Contact1.

OUTPUT NAME/VALUE PAIRS
All Contactl and Contact? field values.

ReadContact Output NV Pairs

Name Description
Email Returns the primary e-mail address if TableName=Contact1.
Website Website profile will return if TableName=Contact1.

287



Integrating With GoldMine

Name Description

CurtainingState | Indicates level of curtaining for returned record. 0 = none, 1 = partial, 2 = full. Use
this to save a call to IsContactCurtained.

RETURN CODES

ReadContact Return Codes

Code Description

1 Success

0 General Failure

-1 No access to the record
-2 Record not found

-3 Invalid parameters

Returning Alerts Attached to a Contact Record

GetContactAlerts returns all alerts attached to a contact record.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS
GetContactAlerts Required NV Pairs

Name Description
RecIlD ReclD of the Contactl record to return. You can optionally use AccountNo.
AccountNo AccountNo of the Contactl record. You may optionally use RecID.

OUTPUT NAME/VALUE PAIRS

The function returns the number of contact alerts in the AlertsCount Name/ Value.
For each alert, the function returns five fields. Each set of alert fields has the alert
number appended to the field name (represented by X in the following table).

GetContact Alerts Output NV Pairs

Name Description

AlertsCount Number of alerts.

CodeX Three-character alert code.

DescX 80-character description.

NotesX 64k of RTF alert message (optional).

CreatorX User that assigned the alert.

SaveHist Value of 1 indicates that GoldMine will save a history record when the user
acknowledges the alert.

288



Integrating With GoldMine

Attaching an Alert

SetContactAlerts attaches an alert to the specified contact record. To generate an
alert list, execute the GetAllAlerts function.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS
SetContactAlerts Required NV Pairs

Name Description

RecIlD RecID of the Contactl record to which to attach this alert. You can optionally use
AccountNo.

AccountNo AccountNo of the Contactl record. You can optionally use ReclID.

Code Three-character Alert Code.

Creator Creator of the Alert.

SaveHist A history record is generated each time the Alert is acknowledged if set to 1.

OUTPUT NAME/VALUE PAIRS
None.

The GMW_Execute function will return the following values:

GMW_ExecuteReturn Values for SetContactAlerts

Return Description

0 Contact not found

1 Alert is added

2 Alert is already attached

Returning All Alerts
GetAllAlerts returns all alerts defined within GoldMine.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS
None.

OUTPUT NAME/VALUE PAIRS

The function returns the number of contact alerts in the AlertsCount name value. For
each alert, the function returns five fields. Each set of alert fields has the alert
number appended to the field name (represented by X below):

GetAllAlerts Required NV Pairs

Name Description

AlertsCount Number of alerts.

289



Integrating With GoldMine

Name Description

CodeX Three-character alert code.

DescX 80-character description.

NotesX 64k of RTF alert message (optional).

Returning a User List

GetUsersList returns a list of all GoldMine users.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

None.

OUTPUT NAME/VALUE PAIRS
GetUsersList Required NV Pairs

Name Description

UserList Comma-delimited list of all user names
UserCount Number of users in the list
UserGroupsList Comma-delimited list of user groups
UserGroupsCount Number of user groups

The GMW __Execute function will return the same value as UserCount.

Returning a User Group Member List

GetGroupUsersList returns a list of all members of a GoldMine user group.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

GroupNo is the user group number. See the GetUsersList or GetUserMemberships
functions for information on how to retrieve a UserGroupsList and their numbers.

OUTPUT NAME/VALUE PAIRS
GetGroupUsers List Output NV Pairs

Name Description
UserList Comma-delimited list of all user names
UserCount Number of users in the list

The GMW_Execute function will return the same value as UserCount.

290




Integrating With GoldMine

Returning Group Memberships for a Specified User

GetUserMemberships returns a list of all user group memberships for the specified
UserID.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIR
UserID is the GoldMine user name.

OUTPUT NAME/VALUE PAIRS
GetUserMemberships Output NV Pairs

Name Description
UserGroupsList Comma-delimited list of user group numbers of which the user is a member
UseGroupsCount Number of users in the list

The GMW_Execute function will return the same value as UserGroupsCount.

Saving a User Group

WriteGroupUsersList saves the user members to a user group. You must have
Master Rights to execute this function.

GOLDMINE API VERSION: 5.00.041

REQUIRED NAME/VALUE PAIRS

WriteGroup UsersList Required NV Pairs

Name Description

GroupNo User group number. For detalils on retrieving a UserGroupList name and number,
see the GetUsersList or GetUserMemberships functions.

UserList Comma-separated list of users who are members of the specified group.

OUTPUT NAME/VALUE PAIR
UserCount is the number of updated user records.

The GMW __Execute function will return the same value as UserCount.

Retrieving the Names of User Groups

GetGroupName returns the descriptive names given for a comma-delimited list of
group numbers.

291



Integrating With GoldMine

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

GetGroupNameRequired NV Pairs

Name

Description

GroupList

Comma-delimited list of group number for which to retrieve names (for example:
1,4,5,8)

RETURN NAME/VALUE PAIRS

GetGroupNameReturn NV Pairs

Name

Description

GroupCount

Number of groups actually found

Each Group
Number

The corresponding name for the group number specified as the value

EXAMPLE

GroupCount = 4

1 =MyGroup
2 = Techs
3 = Sales

4 = Management

Evaluating an Xbase Expression on a Contact Record

XbaseContactEx

pr parses a contact- related Xbase expression and return the result

and type of the expression. It is possible to parse multiple expressions in one call.

GOLDMINE API VERSION: 5.50.10111

NAME/VALUE PAIRS

XbaseContactExprNV Pairs
Name Description
AccountNo Account number of the contact to parse against
XbaseExpr Expression to parse, or
ExprCount Number of expressions to parse, and
XBaseExprl .. Expressions to parse
XBaseExprN

292




Integrating With GoldMine

RETURNED NAME/VALUE PAIRS

XbaseContactExpr Returned NV Pairs

Name Description
Result Result of parsing the expression
Type Type of the expression. Possible values:

0 — Error

1 — Number
2 — String

3 —Date
5-Bool, or

Resultl . . ResultN

Result of each expression

Typel .. TypeN

Type of each expression—see type above for possible values

RETURN VALUES

The XbaseContactExpr function returns the following status values:

XbaseContractExpr return values

Value Description

-2 Contact was not found

-1 No accountno given

0 No expression

1.N Number of correctly parsed expressions

Encrypting Text

The EncryptString function encrypts a plain text string to a Base64 ASCII encoded

buffer.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

EncryptString Required NV Pairs

Name Description

Key Key to use. This can be any value.

ClearText Text to encrypt.

HashKey Set to “1” to specify the key to be hashed before use. Provides better security if the
key is very simple.

RETURNED NAME/VALUE PAIRS

EncryptStringReturned NV Pairs

Name

Description

CryptText

Encrypted string in an ASCII encoded buffer (Base 64).

293




Integrating With GoldMine

Decrypting Encoded Text

The DecryptString function decrypts encoded text.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

DecryptStringRequired NV Pairs

Name Description

Key Key to use. Must be the same as when encrypting.

CryptText Text to decrypt.

HashKey Set to “1” to specify the key to be hashed before use. Provides better security if the
key is very simple.

RETURNED NAME/VALUE PAIRS

DecryptString Returned NV Pairs

Name

Description

ClearText

Decrypted string. The text is padded with spaces to be on a 64-bit (8 bytes)
boundary.

Retrieving the Default Contact Automated Process

Within GoldMine, a user can specify a particular Automated Process (AP) to be
attached to new contact records. The GetNewContactAP function returns the RecID
of the Automated Process that is assigned to automatically attach to new records.
The NV Pair in which the Automated Process ReclD is returned is called
NewContactAP. The function returns 1 on success, and 0 on failure.

GOLDMINE API VERSION: 5.50.10111

294




Integrating With GoldMine

Deleting Calendar Items

The DeleteSchedule function is used to delete scheduled activities.
GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIR
DeleteSchedule Required NV Pair

Name Description

RecIlD ReclD of the scheduled item to delete (Cal record ReclID)
RETURN VALUES

Value Description

0 OK

-1 Empty or bad ReclID value

-2 Can’t open database

-3 Cal record not found

-4 Failed to delete

-9999 General exception (unknown error)

Deleting History Items

The DeleteHistory function is used to delete completed activities.
GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS
DeleteHistory Required NV Pairs

Name Description

RecIlD ReclD of the history item to delete (ContHist record ID)

RETURN VALUES

Value Description

0 OK

-1 Empty or bad ReclID value

-2 Can't open database

-3 ContHist record not found

-4 Failed to delete

-9999 General exception (unknown error)

295



Integrating With GoldMine

Handling GoldMine Security

An important part of your integration considerations should be how you will handle
the security of your GoldMine database. All business logic functions that write and
read from the GoldMine database adhere to the security settings for the user logged
in through GMW_LoadAPI or GMW_LoadBDE. Additional functions are provided
to aid in managing GoldMine security.

Creating a New GoldMine Login

WriteGMUser enables you to create GoldMine user names. The user logged into the
API must have master rights.

GOLDMINE API VERSION: 5.50.10111

NAME/VALUE PAIRS

WriteGMUser NV Pairs

Name Description

UserName Username to add

Password Password for the user

FullName Full name of the user

SQLUser SQL login to be used for this user if connecting to an MS SQL database
SQLPassword Password for the SQL login

MasterUser Set to “1” to enable master rights for this user, otherwise “0”

RETURN VALUES

WriteGMU ser returns “1” on success and “0” on failure.

Reading a GoldMine Login

The ReadGMUser function returns detailed information about a GoldMine Login.

GOLDMINE API VERSION: 6.00.21021

OUTPUT NAME/VALUE PAIRS
ReadGMUserNV Pairs

Name Description

UserName Username to add.

Password Password for the user

FullName Full name of the user

SQLUser SQL login to be used for this user if connecting to an MS SQL database
SQLPassword Password for the SQL login

MasterUser “1” if this is a master rights user, otherwise “0”

296




Integrating With GoldMine

RETURN VALUES
ReadGMUser returns “1” on success and “0” on failure.

Retrieving Security Access

GetUserAccess returns the security information specified for the currently logged-in
user.

GOLDMINE API VERSION: 5.50.10111

GetUserAccess Return Name/Value Pairs

Name Description

SQLUser SQL Username specified for this user

Master Whether or not the user has master rights: 1 master, 0 not

AccessRights This name/value pair consists of a set of flags indicating the access rights

the user has to various areas of GoldMine. Each permission is either
granted or denied based on the value of its position in the set of flags. A
value of “1” signifies the permission is granted, and “0” if it is denied. Below
is a chart of the positions in the set of flags and their corresponding
permission:

Position Permission

2 Others Calendar

3 Others History

4 Others Forecasts

5 Others Reports

6 Others Forms

7 Others Filters

8 Others Groups

9 Others Linked Documents
12 Create new contact records
13 Edit Fields

14 Delete contact records

15 Assign contact record owners
16 Edit tab folders

17 Schedule automated processes
19 Issue SQL Queries

20 Netupdate

21 Output To menu

25 Build groups

35 Real time tab

36 Toolbar settings

UsersCALENDAR | The user group’s calendar that this user has permission to view. Valid if
permission is set. See AccessRights name/value pair.

UsersHISTORY The user group’s history that this user has permission to view. Valid if
permission is set. See AccessRights name/value pair.

UsersLINKS The user group’s linked documents that this user has permission to view.
Valid if permission is set. See AccessRights name/value pair.

UsersGROUPS The user group’s contact groups that this user has permission to view. Valid
if permission is set. See AccessRights name/value pair.

297



Integrating With GoldMine

Name Description

UsersREPORTS The user group’s reports that this user has permission to view. Valid if
permission is set. See AccessRights name/value pair.

UsersFILTERS The user group’s filters that this user has permission to view. Valid if
permission is set. See AccessRights name/value pair.

UsersFORMS The user group’s forms that this user has permission to view. Valid if
permission is set. See AccessRights name/value pair.

UsersSALES The user group’s sales that this user has permission to view. Valid if
permission is set. See AccessRights name/value pair.

ForcelLogoutAt The time (AM/PM) that this user will be forced to exit GM.

IdleLogout The amount of time (in minutes) that GM will remain idle before shutting
down.

MenuExclusion A string containing the menu ID's that are excluded from the user's instance
of GM, delimited by an underscore. Ex. "344 531 164 "

NewRecOwnership | A Boolean value that states whether or not new users are automatically
assigned to this user.

Retrieving Field-Level Access Rights
Field AccessRights returns a list of all fields and the access right for the logged-in

user for each.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS
FieldAccessRightsOutput NV Pairs

Name Description
**TotalFieldCount** Number of fields returned
Field Names Possible values:

(for example, COMPANY, CONTACT, KEY1) N - No Access

R - Read Access
W - Read/Write Access

EXAMPLE NV CONTAINER RETURNED FROM FIELDACCESSRIGHTS
**Tot al Fi el dCount** = 3

COWANY = R

CONTACT = W
ACCOUNTNO = N

Retrieving Visible Fields

NonCurtainedFields returns a \n delimited list of fields visible on partially
curtained records. The list is returned in the NonCurtainedList and
SemiPartNonCurtainedList name/value pairs. The latter pair indicates which fields
are visible when the contact record is semi-partially curtained (all four top quadrants
of the contact record are visible) and is only returned in GoldMine 6.0 and greater.

298




Integrating With GoldMine

Note: You must pass an empty NV container with all calls that do not take any parameters.

GOLDMINE API VERSION: 5.50.10111

299



Integrating With GoldMine

Checking for Record Curtaining

IsContactCurtained tests a contact record for curtaining.

REQUIRED NAME/VALUE PAIRS
IsContactCurtained Required NVPairs

Name Description

RecIlD Record ID of the Contactl record to test. AccountNo can be passed in place of this
Name/Value pair.

AccountNo AccountNo of the Contactl record to test. ReclD can be passed in place of this
Name/Value pair.

OUTPUT NAME/VALUE PAIR

Curtain NV pair return values

Value Description

0 Not curtained

1 Partial curtaining
2 Fully curtained

The GMW _Execute function will return TRUE if the record was found.

Generating a Remote License File

CreateRemoteLicense generates a license file for a remote user or site. The resulting
license.dbf (6.7 or lower) or license.bin (7.0 or higher) file will be stored in a
subdirectory off a specified path. If the path specified is C:\temp, then the file will be
in C:\temp\ user where “user” is the GoldMine username provided to the function.

GOLDMINE API VERSION: 5.50.10111

NAME/VALUE PAIRS

CreateRemotelLicense Required NV Pairs

Name Description

UserName User or site name

LicPath Location to place the license files. If left empty, the file will be put in a directory called
UserLic under the sysdir (GoldMine directory)

LicType U (undocked) or S (site)

SiteUsers For a sublicense site, the number of users at that site

RETURN NAME/VALUE PAIRS

CreateRemoteLicense returns one NV pair called “Result” with the following return
codes. This code is also returned as the function’s result value.

300



Integrating With GoldMine

CreateRemoteLicense Return Result Codes

Value Description
OK
0 General Error
-1 No Username
-2 User already undocked
-3 Cannot open user file
-4 User not found
-5 Undocked license count exceeded
-8 Cannot create the new license file

Removing a Remote License

RemoveRemoteLicense removes an undocked user or sub-license site.

GOLDMINE API VERSION: 5.50.10111

NAME/VALUE

PAIRS

RemoveRemoteLicense NV Pairs

Name

Description

UserName

User Name or Site Name

LicType

U (undocked) or S (sublicense site)

RETURN NAME/VALUE PAIRS

RemoveRe

moteLicense returns one NV pair called “Result” is returned with the

following return codes. This code is also returned as the function’s result value.

RemoveRemoteLicense Return Result Codes

Value Description
1 Success
0 General Error

E-mail Name/Value Functions

This set of

functions allows the manipulation of GoldMine and Internet e-mail.

Reading a Mail Message

The ReadMail function reads an e-mail message based on either the RecID in the
Mailbox table or the Cal/ContHist tables. A flag is required to specify whether the
function should look in the Cal tables or ContHist tables. The mail message can be
opened for editing or reading.

301




Integrating With GoldMine

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

None.

OPTIONAL NAME/VALUE PAIRS
ReadMail Optional NV Pairs

Name Description

MboxRecID Mailbox ReclID. Either this NV pair or the ReclD NV pair must be included.
RecIlD Cal/History ReclD.

History Flag identifying location of ReclID provided. 1 for History, O or nothing for Cal.
ForEdit 1 to open for editing, O or nothing if for reading.

Password Password to decrypt the message if it was encrypted on send.

READMAIL OUTPUT NAME/VALUE PAIRS

Output NV Pairs

Name Description

RecIlD Cal/History ReclD

MboxRecID Mailbox ReclD

MailboxFlags Collection of flags:
MAILBOX_ITEM_READ 0x0001
MAILBOX_ITEM_HIST 0x0002
MAILBOX_ITEM_OUTBOUND 0x0004
MAILBOX_ITEM_ATTACH 0x0008
MAILBOX_ITEM_REDIRECT 0x0010
MAILBOX_ITEM_GMASLINKS 0x0020

To List of all the To: recipients. Comma-delimited and quoted if needed.

Cc List of all the CC: recipients. Comma-delimited and quoted if needed.

Bcc List of all the Bcc recipients. Comma-delimited and quoted if needed.

ReplyTo Reply to address (if any)

From The from address of the message. Will usually be the default user account, but

can contain other addresses.

Subject Subject

Org Organization that will appear in the header.

MessagelD MessagelD from the header.

Status Message status from the header.

Date Internet standard date from the header.

XMailer XMailer from the header.

OtherHeaders Other headers not categorized above.

Body Message body. This will be different in edit mode.

Attachments A guestion mark delimited list of attachments.

302




Integrating With GoldMine

Name Description

Alarm 1if set, O if not.

History 1 if from History, O if not.
Private 1 if private, O if not.

RSVP 1 if marked for RSVP, 0 if not.

ReturnReceipt

1 if requested, O if not.

Encrypted 1 if the message is encrypted, O if not.
Outgoing Message is an outgoing message (queued for delivery or already sent): 1 or 0.
MailType Following types are possible:
SMM _Internet 0 This is the one to handle
SMM_GoldMine 1 Only exists for compatibility with GoldMine 4.0
SMM_Template 2 Template mails.
IsSMIME 1 if MIME based message, 0 if not.
AccountNo Accountno of the linked contact (or empty).
LinkedContact If an additional contact is linked this will have the ContSupp RecID.
LinkedOppty ReclD of the linked opportunity or project (if applicable).
Activity Activity Code
Result Result Code
CalDate Calendar/History date
CalTime Calendar/History time
Contact Contact name
CreateBy User who created the mail or “Internet” if the message was retrieved from the
mail server.
Folder Folder in which the message is stored.
SubFolder Subfolder in which the message is stored. No value will be returned if the
message(s) already exist in the Inbox or Outbox.
RecType RecType of the Calendar record:
In Cal: Q = Queued mail, M = Incoming
In History: Ml = Incoming, MO = Outgoing
Reference Calendar/History reference. Usually initialized from the subject automatically.
User User who owns the message belongs.
HasTransferSet 1 if the e-mail message has a transfer set attached to it, O if not.
HasVCard 1 if the e-mail message has a Vcard attached to it, O if not.
HasWeblmport 1 if the e-mail message has a Weblmport attached, O if not.

303




Integrating With GoldMine

RETURN CODES

ReadMailReturn Result Codes

Value Description

1 Success

0 Failure

-1 Message is private

-2 Message not found, or cannot be loaded
-3 Exception

Queuing a Message for Delivery

The QueueMail function queues a message for delivery. The actual delivery is not
handled through the DLL. It is recommended to set up a specific user in GoldMine
responsible for sending multiple users’ mail on a regular basis.

If the message to be queued already exists within GoldMine, pass either the Mailbox
RecID or the Calendar/History RecID with the history flag. When queuing a new
message, do not provide values for the RecID name/value pairs or the flag.

GOLDMINE API VERSION: 5.50.10111
QueueMail Optional NV Pairs

Name Description

MboxRecID The mailbox ReclID. Either this NV pair or the RecID NV pair must be
included.

RecIlD The Cal/History RecID.

History Flag identifying location of ReclID provided. 1 for History, 0 or nothing
for Cal.

To A list of To: addresses delimited by commas and double-quoted as
needed

Cc A list of CC addresses delimited by commas and double-quoted as
needed

Bcc List of Bcc addresses delimited by commas and double-quoted as
needed

ReplyTo Reply-to address

OtherHeaders Special headers, if needed

Organization Organization field

From From address

Subject Subject of the message.

BodyText Body text

TextRTF Set to non-zero if the text should be in RTF format

NumAttachments Number of attachments to send

304




Integrating With GoldMine

Name

Description

AttachmentO..AttachmentN

Indexed list of attachments. The first attachment NV pair will be
Attachment0, then Attachment2, and so on.

MailboxFlags See ReadMail

AccountNo Accountno of the contact to which the message is linked

OpptyRecID ReclID of an opportunity or project to which the message should be
linked

LinkedContact ReclD of the contsupp record of an additional contact, if so linked

ActivityCode Activity code

CalDate Calendar date — the date to actually send the message

CalTime Calendar time — the time to actually send the message

Reference Reference in the calendar record

Result Result code

User User name

Private 1 to mark as Private, 0 if not

RSVP 1 to request a RSVP, 0 if not

Alarm 1 set alarm, O if not

ReturnReceipt

Request a return receipt. The value portion of the pair should be the
return address to which to send the receipt.

SaveAsDraft Set to 1 if the message should be saved as a draft and not queued.

UseMIME Set to 1 to force the message to be a MIME message even if no
attachments are available, otherwise 0.

AttachVCard Set to 1 to attach the user Vcard to the message, otherwise 0

SendNow Set to “1” to send the message immediately without queuing it. Pertains
to a GoldMine user only (no Internet recipients).

Password Specify a password to set this message to be encrypted. See also the
EncryptUSMode name/value pair.

EncryptUSMode Set to “1” and specify a password to use the US encryption mode. This

will be forced to “0” if the license does not allow it.

RETURN NAME/VALUE PAIRS

QueueMail Return NV Pairs

Name Description

RecIlD Calendar/History ReclD

MboxRecID Mailbox ReclD

MailBoxFlags Mailbox flags (see above for description)

305




Integrating With GoldMine

Updating a Mail Message

The UpdateMail function allows the modifying of the opportunity with which the
mail is associated and indicates whether the message has been read, its encryption
state, and whether or not it is private.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS
UpdateMail Required NV Pairs

Name Description

MboxRecID Mailbox ReclID. Either this NV pair or the ReclD NV Pair must be included

RecIlD Cal/History ReclD

History Flag identifying the location of ReclD provided. 1 for History, O or nothing for Cal.

OPTIONAL NAME/VALUE PAIRS
UpdateMail Optional NV Pairs

Name Description

OpptyRecID Opportunity with which the message is associated.

Private Set to 1 to mark the message as private, otherwise 0.

MarkRead Set to 1 to mark the message as having been read, O for unread.
Password Password to decrypt the message.

EncryptUSMode Set to 1 for 128-bit encryption, 0 for 32-bit encryption.

Saving a Mail Message into GoldMine

The SaveMail function enables you to save a mail message into GoldMine when the
actual sending or retrieval of the message took place in an outside application. The
folder/subfolder specified to save the message to will be created by GoldMine if
needed. There’s no need to create it beforehand.

GOLDMINE API VERSION: 5.50.10111

The NV Pairs coincide with the QueueMail function. SaveMail also has the following
additional NV pairs:

OPTIONAL NAME/VALUE PAIRS
SaveMail Optional NV Pairs

Name Description

OutgoingMail Set to 1 if mail was sent by the user. Don't include, or set to O, if it was received
mail

Folder The name of the folder in which to put the mail. If nothing is given, it will be putin
the Inbox or Outbox according to the OutgoingMail NV pair

306



Integrating With GoldMine

Name

Description

SubFolder

The name of the subfolder in which to put the mail. Folder must also be defined.
To put it in a sub-inbox, set Folder to “X-GM-INBOX”

RETURN CODES

The SaveMail function returns the following values:

SaveMail Return Codes

Value Description

0 Cannot initialize

-1 Cannot queue the message

-2 Can't save the message (for incoming e-mail)

-3 Can’'t complete the message to the requested folder

-4 An existing message was loaded. SaveMail works only with new messages.

Deleting a Message

The DeleteMail function deletes a message according to the settings specified for the
user within GoldMine (use trashcan or not, delete attachments or not). A message
can be deleted based on either the Mailbox RecID or the Calendar/History RecID
with a flag to tell the function if it should look in the Calendar or History table.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS
DeleteMailRequired NV Pairs

Name Description

MboxRecID Mailbox ReclD for the record to be deleted, or

RecIlD Calendar/History ReclD

History 1 if the ReclD in the RecID NV pair is from the History table, or O if from the
Calendar table

Filing a Message in History

The FileMail function files a mail message in history specified by the Mailbox table

RecID.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS
FileMail Required NV Pairs

Name

Description

MboxRecID

Mailbox ReclD for the record to be deleted

307




Integrating With GoldMine

OPTIONAL NAME/VALUE PAIRS
FileMail Optional NV Pairs

Name Description

Folder Folder to file into

Subfolder Subfolder to file into

Result Result to be marked in history

ToUser Used to specify another username if filed on behalf of that user

RETURN CODES

FileMail Return Codes

Value Description

1 Success

0 General Failure

-1 Cannot initialize Internet-related structs

-2 Message doesn't exist or can't be loaded

-3 Cannot complete the message or the message is already filed

Preparing the NV Container for a New Mail Message

A number of options and templates are available to GoldMine users for sending

e-mail within the GoldMine program. For new messages being sent through the API, all
of these can be accessed by utilizing the PrepareNewMail function. This function will
return a container containing the same NV pairs returned by the ReadMail function
reflecting the appropriate settings within GoldMine. You may then modify the container
accordingly and send the message with QueueMail.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS
None.

OPTIONAL NAME/VALUE PAIRS
PrepareNewMailOptional NV Pairs

Name Description

LinkToAccount AccountNo of the contact to link the new message to.

LinkToAddContact ReclID of the additional contact record to link to. LinkToAccount must also be
specified.

ManualTo Specific e-mail address to send to.

MailType Pass a 1 to indicate creation of an internal GoldMine mail message.

RETURN NAME/VALUE PAIRS
Same as ReadMail

308



Integrating With GoldMine

Preparing the NV Container to Reply to a Mail Message

A number of options and templates are available to GoldMine users for sending e-
mail within the GoldMine program. All of these can be accessed for replying to
messages sent through the API by utilizing the PrepareReplyMail function. In
addition, the body text of the message may be returned containing quoted text from
the message being replied to. This function will return a container containing the
same NV pairs returned by the ReadMail function reflecting the appropriate settings
within GoldMine. You may then modify the container accordingly and send the
message with QueueMail.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS
PrepareReplyMail Required NV Pairs

Name Description

FromRecID ReclID from Cal or ContHist of the message replied to

FromHist 1 if the message is in History (contHist), otherwise assumed to be in Cal

QuoteText Text to quote in the reply. If this NV pair is left empty, the full message text
will be quoted. If so, set in the user’'s mail preferences.

ReplyToAll Reply to all recipients of the original message, not just the sender

ToEMail Set to 0 if replying to a non-mail activity

OPTIONAL NAME/VALUE PAIRS

PrepareReplyMailOptional NV Pairs

Name Description

LinkToAccount AccountNo of the contact to whom to link the new message.

LinkToAddContact RecID of the additional contact record to link to LinkToAccount must also be
specified.

RETURN NAME/VALUE PAIRS
Same as ReadMail —see page 301.

Preparing an NV Container to Forward a Mail Message

A number of options and templates are available to GoldMine users for sending e-
mail within the GoldMine program. For forwarded messages being sent through the
API, all of these can be accessed by using the PrepareFwdMail function. In addition,
PrepareFwdMail includes the original message body text and header information to
be forwarded. This function will return a container containing the same NV pairs
returned by the ReadMail function reflecting the appropriate settings within
GoldMine. You may then modify the container accordingly and send the message
with QueueMail.

309



Integrating With GoldMine

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

PrepareFwdMail Required NV Pairs

Name Description

FromRecID | ReclID from Cal or Conthist of the message replied to

FromHist 1 if the message is in History (conthist), otherwise assumed to be in Cal

Redirect Pass a 1 to create a redirected mail instead of forwarded.

ForwardTo Set to 1 to forward the mail to a GoldMine user instead of another contact record.

GMUser

FwdToUser | If ForwardToGMUser is set, then set to the desired GoldMine username to forward the
message to.

OPTIONAL NAME/VALUE PAIRS

PrepareFwdMail Optional NV Pairs

Name

Description

LinkToAccount

Accountno of the contact to link the new message to.

LinkToAddContact ReclID of the additional contact record to link to. LinkToAccount must also be

specified.

RETURN NAME/VALUE PAIRS

Same as ReadMail —see page 301.

Adding an E-mail Center Folder
Use AddFolder to create a folder and/or subfolder in the E-mail Center. If both the

folder and the

subfolder do not exist, then both will be created.

GOLDMINE API VERSION: 5.50.10111

NAME/VALUE PAIRS
AddFolder NV Pairs

Name Description

Folder Folder name to be created—Required

SubFolder Optional subfolder name

User Optional user name. Defaults to the logged-in user

310




Integrating With GoldMine

Deleting an E-Mail Center Folder

Use DeleteFolder to remove folders or subfolders from the E-Mail Center. If both a
folder and subfolder are supplied, only the subfolder will be deleted. Any messages
included in the specified folder are also deleted.

GOLDMINE API VERSION: 5.50.10111

NAME/VALUE PAIRS
DeleteFolder NV Pairs

Name Description
Folder Folder name—Required
Subfolder Optional subfolder name.

Obtaining a List of E-Mail Center Folders

The FolderList function returns a sorted list of folders from the E-Mail Center. Folders
are returned with a prefix of “0” if the folder is a top-level folder, or a prefix of “1” if
it is a subfolder. System folders are not returned, only user folders.

GOLDMINE API VERSION: 5.50.10111

RETURN NAME/VALUE PAIRS
FolderList Return NV Pairs

Name Description
FolderCount Number of folders in the list
Folderl..FolderN List of folders

EXAMPLE LIST OF FOLDERS
Fol der Count = 6

Fol der1 = OFiled

Fol der2 = 1January 2000
Fol der3 = 2February 2000
Fol der4 = 0Sent

Fol der5 = 1January 2000
Fol der6 = 2February 2000

311



Integrating With GoldMine

FromList

The FromList function returns a list of unique From addresses to use in outgoing e-
mail.

GOLDMINE API VERSION: 5.50.10111

RETURN NAME/VALUE PAIRS
FromList Return NV Pairs

Name Description

FromCount Number of From addresses returned

FromO..FromN List of addresses, indexed from 0 to FromCount-1

History Flag identifying the location of ReclD provided. 1 for History, O or nothing for Cal

Accessing E-mail Templates

The TemplateList function returns a list of e-mail templates for a specified user.
GOLDMINE API VERSION: 5.50.10111

OPTIONAL NAME/VALUE PAIRS
TemplateList Optional NV Pairs

Name Description

User Username for whom to get the list of templates. Default is the currently logged-in
user

IncludePublic Set to “1” to include public templates

RETURN NAME/VALUE PAIRS
TemplateList Return NV Pairs

Name Description

TemplateCount Number of templates in the list.

Namel..NameN Names of the templates, indexed from 0 to TemplateCount-1.

RecID1..RecIDN ReclDs of the templates, indexed from 0 to TemplateCount-1.

312



Integrating With GoldMine

Retrieving E-mail Account Information

The GetAccountsList function returns a set of name/value pairs describing all
e-mail accounts defined for the currently logged-in user. Because a user may have
multiple e-mail accounts defined, the name/value pairs are indexed to identify the
account that corresponds to the setting. The index number is appended to the
beginning of each name. The indexes begin with zero (0).

GOLDMINE API VERSION: 5.50.10111

RETURN NAME/VALUE PAIRS
GetAccountsList Return NV Pairs

Name Description

AccountsCount Number of accounts

DefaultAccountlD Default account number

Indexed Name/Value Pairs:

AccountID ID needed by the other e-mail account-related functions (for example,
OnlineList)

DisplayName Name of the e-mail account displayed in the E-mail Center. If available,
the account name is used, and if the user requests that
mailto:user@server will always be shown, then they're appended to the
account name.

User User to whom the profile is assigned (same as the logged-in user)

AccountName User-defined descriptive name given to the e-mail account

POP3Server Address of the POP3 server

Username Username for the POP3 server

Password Password for the POP3 account

OwnUser User who owns the account. This is used so one user can retrieve e-malil
for another user. The result is that e-mail messages retrieved by JOHN but
with OwnUser set to MARY, will appear in MARY’s e-mail center, not
in JOHN’s.

POPAuthMode POP server’s authentication mode. Possible values:
0-PASS
1-APOP
2—RPA
3—NTLM

DeleteMail Set to “1” to auto-delete mail from this account, otherwise “0”

AutoRetrieve Set to “1” to auto-retrieve messages from this account, otherwise “0”

UseSigFile Set to “1” to use a signature file with this account, otherwise, “0”

SigFile Path and filename to the signature file if UseSigFile is set

POPPort POP3 Server’s port number

TOPSupport Set to 1 if the account supports the TOP command

ShowInIMC Set to “1” to show this account in the Internet Mail Center

313



mailto:user@server" 

Integrating With GoldMine

Name Description
SMTPServer SMTP Server address
ReturnAddress Return e-mail address for this account
SMTPPort Port number for the SMTP server
SMTPUser Username for the SMTP server, if the server requires authentication.
SMTPPass Password for the SMTP server, if the server requires authentication
SMTPAUTH Setto “1” if the SMTP server requires authentication
SMTPAUTHMode Possible Values:

0— None

1-Login

2-NTLM

Retrieving a List of Messages Waiting Online

The OnlineList function returns a list of all messages waiting online for the requested
account. Each message’s corresponding NV pairs are indexed from 1 to N according
to the number of available messages. The index numbers are appended to the end of

the NV pair name.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

OnlineList Required NV Pairs

Name

Description

AccountlD

AccountlD to retrieve. Get this value from GetAccountsList.

RETURN NAME/VALUE PAIRS
OnlineList Returned NV Pairs

Name Description

Error Will include an error message if an error occurred and there is a message
to present (like server error messages).

NumMessages The number of messages available online.

Indexed Name/Value Pairs:

Message Subject

Subject of the message.

Message DispDate

Date as displayed in the GoldMine E-mail Center.

Message_ Date

Date in the message.

Message Time

Time the message was sent.

Message Address

Address that sent the message.

Message_Size

Size in bytes.

Message_DispSize

Size as displayed in GM.

314




Integrating With GoldMine

Name Description
Message Type Possible Values:
0— Plain

1 — Plain MIME (no attachments)
2 — Complex MIME
3 - GM Sync set

Message_AccNo

Accountno to which this message is linked.

Message_UID

Server UID of this message.

Message_Num

Message number on the server—use for retrieval/delete.

Message Mailer

Mailer that generated the message.

Message ReplyTo

Reply-to address for this message.

Message_To

Address to which the message is sent.

Message CC

CC (copy) addresses for the message.

Message_Bcc

Bcc (blind copy) addresses for the message.

Message_GMUsersTo

Comma-delimited list of GoldMine users to whom the message is being
sent.

Message_GMUsersCc

List of GoldMine users to whom the message is being copied.

Message_Org

E-mail organization field.

Message OtherHeaders

Other headers associated with this message.

Message Read

1 if the message has already been read, otherwise 0.

Message Headers

Formatted headers as they appear in the preview window.

Message Body

Message body (according to the number of lines previewed in the E-mail
Center).

RETURN VALUES

OnlineList Return Values

Value Description

1 Success

0 General Failure

-1 Invalid Account ID

-2 Protocol Error—see the description in error

-3 Comm error—see the description in error

-4 Timeout or other error—see the description in error
-5 Unknown error

315




Integrating With GoldMine

Retrieving Messages

The RetrieveMessages function retrieves specified messages that are online. The
returned name/value pairs will have a message number appended to the end of the

name.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

RetrieveMessage Required NV Pairs

Name Description

AccountlD Account ID to use.

AllMessages Set to “1” for all messages to be retrieved.

MessagelList Tab (\t) delimited list of message numbers (taken from OnlineList) to retrieve.

RETURN NAME/VALUE PAIRS

RetrieveMessage Return NV Pairs

Name Description
Message CalRec Cal ReclD of the message, ***** if an error occurred
Message MboxRec Mailbox ReclID of the message, ***** if an error occurred.

RETURN VALUES

RetrieveMessages Return Values

Value Description

1 Success

0 General Failure

-1 Invalid Account ID

-2 Protocol Error—see the error description in error

-3 Comm error—see the error description in error

-4 Timeout or other error—see the error description in error
-5 Unknown error

316




Integrating With GoldMine

Deleting Online E-mail Messages

The DeleteMessages function allows deletions of messages waiting online.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

DeleteMessages Required NV Pairs

Name Description

AccountID Account ID to use.

AllMessages Set to “1” for all messages to be deleted.

MessagelList Tab (\t) delimited list of message numbers (taken from OnlineList) to delete.

Return Name/Value Pairs

The returned name/value pair will have each message number appended to the end

of the name.

GOLDMINE API VERSION: 5.50.10111

DeleteMessages Return NV Pairs

Name

Description

Message Deleted “1” if the message was deleted successfully.

RETURN VALUES

DeleteMessages Return Values

Value Description

1 Success

0 General Failure

-1 Invalid Account ID

-2 Protocol Error—see the error description in error

-3 Comm error—see the error description in error

-4 Timeout or other error—see the error description in error
-5 Unknown error

317




Integrating With GoldMine

Saving a Manual List of Recipients

The SaveManualRcptList function will receive a list of manually provided recipients
and save them to an .ini file. The name/value pair list will be Recipientl.RecipientN
with the values being the addresses you wish to add to the list. Any missing entry
will be saved as an empty address.

GOLDMINE API VERSION: 5.50.10111

Retrieving a Manual List of Recipients

The GetManualRcptList function returns a list of the saved manual recipient list. The
return value will be “1” for success and “0” for failure. The container will have a
name/value pair NumberOfRecipients with the number of recipients. Finally, it will
contain Recipient0..RecipientN with the actual addresses.

GOLDMINE API VERSION: 5.50.10111

Managing Internet E-mail Preferences

GetEmailPrefs and SetEmailPrefs allow you to get and set the Internet preferences
for the user. The preferences correspond with the Internet Preferences dialog box
within GoldMine. The functions work the same, except the former receives
information from GoldMine and the latter updates the data in GoldMine.

GOLDMINE API VERSION: 5.50.10111

Important Note: Before calling SetEmailPrefs, the values of the e-mail preferences in
the NV pair container must be preloaded with GetEmailPrefs. Otherwise, all e-mail
preferences not included in the container for SetEmailPrefs will be deleted from
GoldMine.

OPTIONAL INPUT (SETEMAILPREFS) AND OUTPUT (GETEMAILPREFS) NAME/VALUE PAIRS

GetEmailPrefs and SetEmailPrefs Name/Value Pairs

Name Description
UserName (GoldMine The GoldMine user whose e-mail preferences you wish to retrieve or set
6.0 or greater ONLY)
MultiActive 1 — Show all accounts in the mail center
0 — Show only the default account
PreviewLines Number of lines to preview in the E-Mail Center prior to downloading the
message
QuoteAll 1 to quote entire message by default when replying, otherwise 0
NewQuoteStyle 1 to specify a custom quote string identifier, otherwise 0
QuoteString Quote string identifier to be used if NewQuoteStyle is set. Ex; >>
Organization User-specified signature .txt file

318



Integrating With GoldMine

Name Description

UseOrg 1 to include the signature specified in Organization

SaveHistDefault 1 — Save filed mail in history by default
0 - Do not

AttachDir Folder in which to save attachments.

OnlyGMMail 1 —When auto retrieving, retrieve only mail from other GoldMine clients.
0 — Auto retrieve mail from all clients

SkipLarge If automatic retrieval is set, set to 1 to skip large e-mail message larger

than size specified in MaxEmailSize, otherwise 0

MaxEmailSize

Limit on size of messages to be automatically retrieved if SkipLarge is set
tol

SkipNoAddress 1 indicates to not skip addresses not on file, otherwise 0
WarnAboutRTF 1 —warn user before sending HTML mail

0 - Do not
GetUnreadMail g automatic retrieval is set, set to 1 to retrieve only unread mail, otherwise
UseHeaderDate 1 to use the date in the mail header, otherwise 0
CompleteOnReply 1 to complete the original message being replied to, otherwise 0
UUENcodeScan 1 to scan mail for UUEncoded Data, otherwise O
VcardAction 100 if incoming Vcards are not to be saved
Use8BitEncoding 1 to use 8 hit encoding, otherwise 0
AutoSpell 1 to automatically spell check messages before sending, otherwise 0
ForceWrapAt When forcing line wrap, wrap at this specified column number
WrapReplyAt Wrap quoted lines in reply at this specified column number

LoadPublicTemplates

1 to show public e-mail templates, otherwise 0

ReadOnGet 1 to Open ‘Read E-mail’ dialog on retrieval, otherwise 0
LinkOnGet 1 — Prompt user if incoming e-mail address is not on file
0 - Do not
SkipOnDispose 1 — Go to next message in reader after disposing of (deleting/filing) the
current one
0 — Close the reader
ShowHeaders Settings for the mail center preview window headers display:
0 - no headers
1 — summary of headers only
2 —full headers display
UseTrashCan 1 to use trash can for deleted mail, otherwise 0.
EmptyTrashOnExit 1 to empty trash when closing E-Mail Center, otherwise 0.
ConfirmEmptyTrash 1 to confirm before deleting from trash can, otherwise 0.

ShowFullAccountName

1 to show both the e-mail address and the account name (if available) for
online accounts, otherwise 0.

319




Integrating With GoldMine

Name Description

DiscardWeblmportMess | 1 to discard Web import message after the data has been imported,

ages otherwise 0.

AutoWeblmport 1 to import data when retrieving E-Mail Center mail, otherwise 0 (setting
this to 0 does NOT assume BackgroundWebimp).

BackgroundWeblmp 1 to import data on background e-mail retrieval, otherwise 0 (setting this
to 0 does NOT assume AutoWeblmport).

SyncContact Sticky setting from the E-mail Center to move the current contact record
to the one the selected message belongs to. Setto 1 to activate, 0
otherwise.

KeepOldTransfers 1 to keep the transfer set attachments after retrieving them, otherwise O.

AllowDeleteAll 1 to enable ‘Delete All Server Mail’, otherwise 0.

SendVCard 1 to use user-supplied V-card, otherwise 0.

DefaultLinkAddr When linking an incoming e-mail in GoldMine, if the
e-mail does not exist within GoldMine, a dialog box appears to the user.
There is a checkbox indicating whether to keep the setting of how the
unlinked message is handled. To keep the setting, set this NV pair to 1,
otherwise 0.

SyncAttachmentDefault 1 to mark attachments for syncing by default, otherwise 0.

ShowOutlookinIMC 1 to show the Outlook folder in the E-Mail Center, otherwise 0.

LinkAttachToCont 1 to save attachments as linked documents, otherwise 0.

MarklncomingAsPrivate

1 to mark incoming messages as private, otherwise 0.

DelAttachwithMsg 1 to delete attachments when deleting the malil, otherwise 0.

KeepUserVCard Every time GoldMine is restarted and a message is sent, GoldMine
creates a VCard for the sending user so that a correct VCard for the user
can be sent with the mail if so requested. The VCard is created from
information GoldMine has for the logged-in user. Sometimes a user may
want to manually edit the VCard to add or change information not
available to GoldMine. In this case, the user can ask GoldMine to not
recreate the VCard from scratch and GoldMine will use the existing
VCard that the user modified. Set to 1 to have GoldMine not create a
new VCard, otherwise 0.

BccToSelf 1 to always send a Bcc to the user, otherwise O.

UseShortDate 1 to use the short date format, 0 to use the long format.

GMAttachAsLinks 1 to send attachments as links to GoldMine users, otherwise O.

POPIdleDisconnect Number of minutes to wait without activity only in the E-mail Center
before automatically disconnecting. The default is 10 minutes.

SkipOverWriteUl 1 to suppress file overwrite prompt, otherwise 0.

RetrieveOverwrite Default action to be taken when an e-mail attachment file already exists.

Possible values:

4 — auto name assignment
5 —do not save the file

6 — overwrite existing file

7 — new file name




Integrating With GoldMine

Name Description

DefaultOUTFolder Folder name under which to put sent mail (replace the default sent
folder).

DefaultiNFolder Folder name under which to put filed mail instead of the default Filed
folder.

MonthlyFolderNames List of folder names to replace the standard month names used in

GoldMine by default. Each month must be * separated and the last entry
must be ??7*

NewFilingMode 1 to indicate to use two-level filing mode

(GoldMine 6.0 and

greater ONLY)

ActiveAutoGetMail 1 to activate automatic mail retrieval, otherwise 0.

Getlinterval Frequency in minutes to check for mail automatically, if
ActiveAutoGetMail is set.

SendQueueWhen 1 to send queued messages when ActiveAutoGetmail is set, otherwise 0.

AutoGet

GetOldToNew 1 to download old messages first, otherwise 0.

UseHTMLByDefault 1 to use HTML when creating new e-mail, otherwise 0.

ExtractEmbedded 1 to extract embedded HTML as attachment, otherwise 0.

HTML

TCPTimeout Number of seconds until a communication timeout.

SendQueueFor A semicolon-delimited list of GoldMine user names for which this account
should send queued e-mail.

FakeSMTPDomain Used to present the system as a user-defined name if the name returned
by the system is not acceptable by the SMTP server.

DefaultTemplate Specify the default template name for new outgoing messages.

DefaultReplyTemplate Specify the default template name for new reply messages.

DefaultFwdTemplate Specify the default template name for new forwarded messages.

Quarantine-to Name of the quarantine directory to which the quarantine rules move
files.

In addition, each e-mail account set up for the user is supplied or returned through a
special multi-value item named Profiles. The Profiles NV pair contains a set of
containers; each holds information for a different e-mail account. You can determine
the number of accounts by calling the GMW_NV_GetMultiValueCount function.

To retrieve the HGMNYV pointers for the child containers, call GMW-NV-
GetMultiNvValue for each account to retrieve.

If you are setting e-mail preferences, you will want to set the NV values for an
e-mail account by using either:

e GMW_NV_AppendNvValue, to copy a prepared container to
the Profiles NV pair or

321



Integrating With GoldMine

e GMW_NV_AppendEmptyNvValue, to create an empty child
container within the Profiles NV Pair for which you can later
set the values.

See “Working with Multi-Value Name/ Value Pairs” on page 109 for more
information on these functions.

Profiles child containers have the following NV Pairs.

Profiles Child Container NV Pairs

Name Description

POP3_Account The user-editable descriptive name for the account
POP3_Server The server name or address

POP3_User The server user name

POP3_Pass The password for the account

Return_Address

The return address

SMTP_Server The SMTP server name or address
SigFile The path to the signature file to use
OwnUser The user to which this account belongs. This is used so one user can retrieve e-
mail for another user. The result is that e-mails retrieved by JOHN but with
OwnUser set to MARY will appear in MARY’s e-mail center, not in JOHN’s.
DelServerMail Set to 1 to delete the messages from the server upon retrieval, otherwise 0
AutoGetMail Set to 1 to automatically retrieve mail for this account.
UseSigFile Set to 1 to use the specified signature file
ShowInIMC Set to 1 to show this account in the E-mail Center.
UseTOPCmd Set to 1 if this server supports the TOP command, otherwise 0
POP3_Port The POP3 server’s port number
SMTP_Port The SMTP server’s port number
POP3_AuthMode | The POP server’s authentication mode. Possible values:
0-PASS
1- APOP
2—RPA
SMTP_AuthMode | Possible values:
0—None
1-Login
2—NTLM
SMTP_User The username for the SMTP server, if the server requires authentication
SMTP_Pass The password for the SMTP server, if the server requires authentication




Integrating With GoldMine

Validating a Web User Name and Password
ContactLogin validates a WebUserName/WebPassword assigned to a contact.

GOLDMINE API VERSION: 5.50.10111

REQUIRED NAME/VALUE PAIRS

ContactLogin Required NV Pairs

Name Description
UserName Contact's Web user name.
Password Contact’'s Web password.

SPECIAL NAME/VALUE PAIRS

ContactLogin Special NV Pairs

Name Description

NewUserName Changes the existing Web username. Must be used with NewPassword, and a
valid UserName. Password must also be passed for verification.

NewPassword Changes the existing Web password. Must be used with NewUserName, and a
valid UserName/Password must be passed for verification.

OUTPUT NAME/VALUE PAIRS

ContactLogin Output NV Pairs

Name Description

AccountNo Returns the AccountNo of the contact record

RecID Returns the ReclD for the contact record
NOTES

This function is useful when writing an extranet solution for GoldMine. To enable
GUI access to these features, set ContWebAccess=1 under the [GoldMine] section of
your username.ini. You can then select Edit|Record Properties|WebAccess to set the
Web user/pass (maximum of 15 characters each). GoldMine stores Web access data
in ContSupp with a RecType of W. Each user name and password must be unique.
This information does not synchronize.

323




Integrating With GoldMine

Manipulating User-Defined Fields and Views

Beginning in GoldMine 6.00.21021, the ability to read and write changes to the user-
defined fields and views was added to the GoldMine API. Most of the following
functions use multi-container NV pairs. This means that a single NV pair may
contain multiple containers, each with their own set of NV pairs. For example, when
reading field views, there will be an NV pair named “View”. This NV pair will
contain an entire NV pair container for each field view in GoldMine containing a set
of NV pairs that describe that view. In addition, each of those containers will store
an NV pair named “Field”. This NV pair will contain an entire NV pair container for
each field defined on that view, each with its own set of NV pairs describing that
field. For information on how to read and manipulate multi-container NV pairs,
please see Working with Multi-Value Name/ Value Pairs on page 93.

Important Note: The GoldMine user logged into the API must have master rights in
order to use these functions.

Reading All Field Views

The GetContactViews function returns all of the field views, including the custom
screens, main contact record, and the summary tab fields. As described above, this
function utilizes multi-container NV pairs. Execute GetContactViews, passing an
empty NV pair container, to retrieve the following NV pairs describing the field
views.

GOLDMINE API VERSION: 6.00.21021

OUTPUT NAME/VALUE PAIRS
GetContactViews Output NV Pairs

Name Description

NumViews The number of views, including the Main and Summary views.

SelectedViewlD | The view currently selected for the Field tab of the contact record.

below for details of the NV containers this value stores.

View A multi-value list containing a container for each of the actual views. See the table

VIEW NAME/VALUE PAIRS

The View NV Pair in the container returned by GetContactViews contains NV Pair
containers with the following NV Pairs describing the field views defined in
GoldMine.

324



Integrating With GoldMine

View NV Pair Output Container

Name Description

ID The view ID

Name The view name

TabName The tab name, if this view has one

UserAccess The user that is allowed to access this view.

CurrContactset If set to 1, then the view is visible in the current contact set, otherwise the value is
0

FieldCount The number of fields this view has.

Field A multi-value list containing a container for each of the actual fields on the view.
See the table below for details of the NV containers this value stores.

FIELD NAME/VALUE PAIRS

The Field NV Pair in the View container contains NV Pair containers with the
following NV Pairs describing the fields displayed on the view defined in GoldMine.

Field NV Pair Output Container

Name Description

VerticalCenter Y coordinate of the colon on the view

HorizontalCenter X coordinate of the colon on the view

LabelSize The length allowed for the label

Editwidth The width of the editable space for the field on the view

IndexNumber This is the index associated with this field and is used to decide if the field is
searchable (as in the Key fields).

FieldLen The physical length of the field in the database.

HotKey Reserved for future use.

TabOrder The tab order position for the field (the order in which the field will be selected
when pressing the tab key)

ExprField If 1, indicates an expression field, otherwise 0

PhoneFaxField If 1, indicates if the field is a phone or fax field.

ExtendedProperties | If 1, this field has extended properties

LogInHistory If 1, any changes made to this field will be logged as a history record on the
contact

ReadAccess Indicates the user or group that can read the contents of the field

WriteAccess Indicates the user or group that can modify the contents of the field

FieldName The physical field name

FieldExpr The field expression if ExprField = 1

GlobalLabel The global label for the field

LocalLabel The local label for the field

RecNo Unique identifier for the field on the view. Needed to modify or delete the field
from the view.

325




Integrating With GoldMine

Name Description

LabelExpr Expression to evaluate to generate the field label

LabelColorExpr Contains the number representing the color of the label

FieldColorExpr Contains the number representing the color of the field.

LabelReference Text va}Iu)e to refer to an expression label (in the list of fields for the view, for
example

GETCONTACTVIEWS RETURN VALUES
GetContactViews Return Values

Value Description

1 Success

0 General Failure

-1 Not a master rights user

-2 Field views cannot be loaded

Deleting a Contact View

The DeleteContactView function deletes the view specified by the view ID. This

function accepts one input NV pair, ViewlID. Retrieve the ViewID with the
GetContactViews function.

GOLDMINE API VERSION: 6.00.21021

DELETECONTACTVIEWS RETURN VALUES

DeleteContactViews Return Values

Value Description

1 Success

0 General Failure

-1 Not a master rights user

-2 Field view cannot be found

-3 The Main and Summary view cannot be deleted
-4 Failed to delete

326



Integrating With GoldMine

Creating or Modifying a Contact View

The WriteContactView function enables adding and modifying contact views. In
addition, fields displayed on the contact views are added, modified or deleted
through this function. This function does not modify the data structure, only the
display properties of the fields included in the view.

The input NV container for this function has an NV pair named Field. This is a
multi-value NV pair that stores multiple NV pair containers, each describing a field
to add, update, or delete on the view. Multiple field operations can be performed in
one call to WriteContactView. For example, an existing field could be updated, new
fields can be added to the view, and fields can be deleted; each operation has its own
Field child container.

GOLDMINE API VERSION: 6.00.21021

INPUT NAME/VALUE PAIRS

WriteContactView Input NV Pairs

Name Description

ID The view ID if updating an existing view. Retrieve this from GetContactViews.
Omit if creating a new view.

Name The view name

TabName The tab name, if this view has one

UserAccess The user that is allowed to access this view.

CurrContactset If set to 1, then the view is visible in the current contact set, otherwise the value is
0

Field A multi-value list containing a container for each of the field operations to perform
(adding, deleting, modifying). See the table below for details of the NV containers
to include.

FIELD NAME/VALUE PAIRS

The Field NV Pair in the parent container contains NV Pair containers with the
following NV Pairs describing the fields to add, edit or delete from the view.

Field NV Pair Input Container

Name Description

Action NEW, UPDATE, or DELETE

RecNo Unique identifier for the field on the view. Omit if adding a new field to the
view. If updating or deleting, retrieve this value by calling GetContactViews.

VerticalCenter Y coordinate of the colon on the view

HorizontalCenter X coordinate of the colon on the view

LabelSize The length allowed for the label

Editwidth The width of the editable space for the field on the view

HotKey Reserved for future use.

327




Integrating With GoldMine

Name Description

TabOrder The tab order position for the field (the order in which the field will be selected
when pressing the tab key)

ExprField If 1, indicates an expression field, otherwise 0

LoglnHistory If 1, any changes made to this field will be logged as a history record on the
contact

ReadAccess Indicates the user or group that can read the contents of the field

WriteAccess Indicates the user or group that can modify the contents of the field.

FieldName The physical field name

FieldExpr The field expression if ExprField = 1

GlobalLabel The global label for the field

LocalLabel The local label for the field

LabelExpr Expression to evaluate to generate the field label

LabelColorExpr Contains the number representing the color of the label

FieldColorExpr Contains the number representing the color of the field.

LabelReference Text value to refer to an expression label (in the list of fields for the view, for
example)

WRITECONTACTVIEW OUTPUT NV PAIRS
One NV pair is returned, FieldErrors, indicating the number of field-related errors
reported. The function continues adding fields even if some fail. For each field the
API could not add, an entry is added to the field’s child container in an NV pair
called Error. The possible values for this pair are:

Field Error Codes

Value Description

-1 Invalid Action

-2 Requested field not found

-3 No Record ID given for updating or deleting a field

-4 Field cannot be deleted

-5 Field cannot be written

-6 For a new view, only new fields are possible (Action cannot equal MODIFY or DELETE if
creating a new view).

-7 Reserved

-8 Reserved

-9 Reserved

-10 ->-20 | Invalid positioning

WRITECONTACTVIEW RETURN VALUES

WriteContactView Return Values

| Value | Description

328



Integrating With GoldMine

Value Description

1 Success

0 General Failure

-1 Not a master rights user

-2 Field view cannot be loaded
-3 Field view could not be saved

Reading Custom Fields

The ReadCustomFields function returns information about the physical properties of
custom fields defined in GoldMine. This function contains a multi-value NV Pair,
called Field, which stores multiple name/value containers, each with specific details

about each

field. For information on manipulating and reading multi-value NV

pairs, see Working with Multi-Value Name/Value Pairs on page 93.

GOLDMINE API VERSION: 6.00.21021

READCUSTOMFIELDS INPUT NV PAIRS

ReadCustomFields Input NV Pairs
Name Description
NumFields | The number of fields returned.
Field A multi-value NV containing containers for each field returned. See the table below for
details on the NV pairs included.

FIELD NV PAIR CONTAINER

The Field NV pair in the parent container returned by ReadCustomFields contains
an NV pair container for each custom field defined in GoldMine. The fields are
described by the following NV pairs:

Field NV Pairs
Name Description
Description A text description of the field
Name The physical field name
Type The data type stored in the field. Possible values are C (char), D (date), and N
(numeric)
Length The physical length of the field
Decimals The number of decimal places, if numeric

READCUSTOMFIELDS RETURN VALUES

ReadCustomFields Return Values

Value Description
1 Success
0 General Failure

329




Integrating With GoldMine

Value Description
-1 Not a master rights user
-2 Cannot open ContUDef

Modifying the Structure of Custom Fields

The EditCustomField function adds, deletes, or updates a custom field.

Important Note: The API will not rebuild the GoldMine database to reflect the
physical changes you may specify with this function. This must be initiated with the
GoldMine application.

GOLDMINE API VERSION: 6.00.21021

EDITCUSTOMFIELD INPUT NV PAIRS
EditCustomField Input NV Pairs

Name Description

Action NEW, DELETE, or UPDATE

Description | A meaningful description of the field

Name The field name of an existing field to update or delete. Specify a new unique field
name if creating a new field.

Type The data type of the field: C (char), D (date), or N (numeric)

NewName | The new name to assign to this field if updating an existing one

Length The physical length to make the field

Decimals The number of decimals for a numeric field

EDITCUSTOMFIELD RETURN VALUES
EditCustomField Return Values

Value Description

1 Success

0 General Failure

-1 Not a master rights user
-2 Cannot open ContUDef
-3 Invalid action

-4 Invalid field name

-5 Name is not unique

-6 Field not found

-7 Field not allowed to be deleted
-8 Invalid field type

-9 Missing field parameters
-10 Failure deleting field

330




Integrating With GoldMine

Value

Description

-11

Cannot write record

Reading Calendar Preferences

ReadCalendarPrefs reads a passed user's calendar preferences. If user not passed,
assumed to be the session's logged in user. User must be master rights in order to

read other'

s prefs..

READCALENDARPREFS INPUT NV PAIRS

ReadCalendarPrefs Input NV Pairs

Name

Description

UserName

The GoldMine user name to read the prefs of

READCALENDARPREFS OUTPUT NV PAIRS
ReadCalendarPrefs Output NV Pairs

Name Description

UserName The GoldMine user name to read the prefs of
UserList The list of Users that appear on the user's calendar
PegboardUserList List of users on the user's pegboard
ShowAction Show actions on the calendar

ShowAppt Show appointments on the calendar
ShowCall Show calls on the calendar

ShowEvent The number of decimals for a numeric field
ShowLitReq Show literature requests on the cal
ShowMsg Show msgs on the cal

ShowOccasion Show occasions on the cal

ShowOpTask Show opportunity tasks on the cal
ShowOther Show other events on the cal
ShowProjTask Show project tasks on the cal
ShowPubEvent Show public events on the cal

ShowSales Show sales on the cal

ShowToDo Show to do's on the cal

ShowHistAction Show history actions on the cal
ShowHistCall Show call actions

ShowHistEvent Show event actions

ShowHistLitReq Show lit req actions

ShowHistMsg Show msg actions

ShowHistOpTask Show op task actions

331




Integrating With GoldMine

Name Description

ShowHistOther Show other actions
ShowHistProjTask Show proj task actions
ShowHistPubEvent Show pub event actions
ShowHistSales Show sales actions
ShowHistToDo Show todo actions

DefaultView The default view of the calendar

0-day

1 - week

2 - month

3 - year

4 - planner
5 - outline

6 - pegboard

AutoForwardCalls

Automatically forward calls

AutoForwardMsgs Automatically forward messages
AutoForwardActions Automatically forward actions
AutoForwardAppts Automatically forward appointments
AutoForwardSales Automatically forward sales
AutoForwardOther Automatically forward other

SyncRecord Sync the record

ShowTotals Show totals

Showlcons Show icons

RefreshRate In seconds

PegRefreshRate Pegboard refresh rate in secs

Color The windows color value for the cal color
Timelncrement In minutes

FontSize Calendar font size

ShowWeekends Show weekends

FirstDayofWeek 0 = Sunday 7 = sat

nWeekends Bit mathed for days to consider the weekend
DayBegin Military time for the day beginning. 09:00
DayEnd Day end in military time - 17:00 for 5pm
CalShowActvCode Show activity code on cal
HistShowActvCode Show hist activity code

PublishiCal Publish iCal file?

PublishiCalPath

The path to where to publish ical - must be in URI format (must
start with file:, http:, or ftp:)

PublishiCalUser

If path is ftp or http, the login user name

332




Integrating With GoldMine

Name

Description

PublishiCalPwd

If path is ftp or http, the login user pwd

PublishiCalUsersList

The users to publish

PublishicalAction

Publish actions

PublishicalAppt

Publish appointments

PublishicalCall

Publish calls

PublishicalEvent

Publish events

PublishicalLitReq

Publish literature requests

PublishicalMsg

Publish msgs

PublishicalOccasion

Publish occasions

PublishlcalOpTask

Publish opportunity tasks

PublishicalOther

Publish other events

PublishicalProjTask

Publish project tasks

PublishicalPubEvent

Publish public events

PublishicalSales

Publish sales

PublishicalToDo

Publish to do's

PublishicalHistAction

Publish history actions

PublishicalHistCall

Publish call

PublishicalHistEvent

Publish event

PublishicalHistLitReq

Publish literature request

PublishicalHistMsg

Publish message

PublishicalHistOpTask

Publish op task

PublishicalHistOther

Publish other

PublishicalHistProjTask

Publish project task

PublishicalHistPubEvent

publish public event

PublishicalHistSales

Publish sales

PublishicalHistToDo

Publish todo

Publish2ICSFilterByDate

Dates to publish

Publish2ICSStartDate

The start date of the range

Publish2ICSEndDate

The end date of the range

PublishICSFilterActivCode

The activity code to filter on

PublishICSFilterRef

The reference code to filter on

PublishICSFilterByLink

Filter on the link? true or false

PublishHTML

Publish cal to HTML?

PublishHTMLPath

The path to where to publish the HTML - must be in URI format
(must start with file:, http:, or ftp:)

PublishHTMLUser

If path is ftp or http, the login user name

333




Integrating With GoldMine

Name

Description

PublishHTMLPwd

If path is ftp or http, the login user pwd

PublishHTMLUsersList

The users to publish

PublishHTMLAction

Publish actions

PublishHTMLAppt

Publish appointments

PublishHTMLCall

Publish calls

PublishHTMLEvent

Publish events

PublishHTMLLitReq

Publish literature requests

PublishHTMLMsg

Publish msgs

PublishHTMLOccasion

Publish occasions

PublishHTMLOpTask

Publish opportunity tasks

PublishHTMLOther

Publish other events

PublishHTMLProjTask

Publish project tasks

PublishHTMLPubEvent

Publish public events

PublishHTMLSales

Publish sales

PublishHTMLToDo

Publish to do's

PublishHTMLHistAction

Publish history actions

PublishHTMLHistCall

Publish call

PublishHTMLHistEvent

Publish event

PublishHTMLHistLitReq

Publish literature request

PublishHTMLHistMsg

Publish message

PublishHTMLHistOpTask

Publish op task

PublishHTMLHistOther

Publish other

PublishHTMLHistProjTask

Publish project task

PublishHTMLHistPubEvent

Publish public event

PublishHTMLHistSales

Publish sales

PublishHTMLHistToDo

Publish todo

Publish2HTMFilterByDate

Dates to publish
0 - today

1 - yesterday

2 - tomorrow

3 - this week

4 - last week

5 - next week
6 this month

7 last month

8 next month

9 - this year

10 - next year
11 - date range

Publish2HTMStartDate

the start date of the range

334




Integrating With GoldMine

Name

Description

Publish2HTMEndDate

the end date of the range

PublishHTMFilterActivCode

the activity code to filter on

PublishHTMFilterRef

the reference code to filter on

PublishHTMFilterByLink

Filter on the link? true or false

PublishFB

publish free busy time if PublishFB is TRUE

PublishFBPath

the path to where to publish free busy - must be in URI format
(must start with file:, http:, or ftp:)

PublishFBUser

if path is ftp or http, the login user name

PublishFBPwd

if path is ftp or http, the login user pwd

PublishFBAction

Publish actions

PublishFBAppt

Publish appointments

PublishFBCall

Publish calls

PublishFBEvent

Publish events

PublishFBLitReq

Publish literature requests

PublishFBMsg

Publish msgs

PublishFBOccasion

Publish occasions

PublishFBOpTask

Publish opportunity tasks

PublishFBOther

Publish other events

PublishFBProjTask

Publish project tasks

PublishFBPubEvent

Publish public events

PublishFBSales

Publish sales

PublishFBToDo

Publish to do's

PublishFBHistAction

Publish history actions

PublishFBHistCall

Publish call

PublishFBHistEvent

Publish event

PublishFBHistLitReq

Publish literature request

PublishFBHistMsg

Publish message

PublishFBHistOpTask

Publish op task

PublishFBHistOther

Publish other

PublishFBHistProjTask

Publish project task

PublishFBHistPubEvent

Publish public event

PublishFBHistSales

Publish sales

PublishFBHistToDo

Publish todo

335




Integrating With GoldMine

Name Description

PublishFBFilterByDate Dates to publish
0 - today

1 - yesterday

2 - tomorrow

3 - this week

4 - last week

5 - next week
6 this month

7 last month

8 next month

9 - this year

10 - next year
11 - date range

PublishFBStartDate The start date of the range

PublishFBEndDate The end date of the range

PublishFBFreq Frequency in minutes

READCALENDARPREFS RETURN VALUES

ReadCalendarPrefs Return Values

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

-3 Cannot open the cal table

Modifying Calendar Preferences

WriteCalendarPrefs writes a passed user's calendar preferences. The user must have
master rights in order to write another user's preferences.

WRITECALENDARPREFS INPUT NV PAIRS

WriteCalendarPrefs Input NV Pairs

Name Description

UserName | The GoldMine user name to read the prefs of

WRITECALENDARPREFS OUTPUT NV PAIRS
WriteCalendarPrefs Output NV Pairs

Name Description

UserName The GoldMine user name to read the prefs of
UserList The list of Users that appear on the user's calendar
PegboardUserList List of users on the user's pegboard

336



Integrating With GoldMine

Name Description

ShowAction Show actions on the calendar
ShowAppt Show appointments on the calendar
ShowCall Show calls on the calendar
ShowEvent The number of decimals for a numeric field
ShowLitReq Show literature requests on the cal
ShowMsg Show msgs on the cal
ShowOccasion Show occasions on the cal
ShowOpTask Show opportunity tasks on the cal
ShowOther Show other events on the cal
ShowProjTask Show project tasks on the cal
ShowPubEvent Show public events on the cal
ShowSales Show sales on the cal

ShowToDo Show to do's on the cal
ShowHistAction Show history actions on the cal
ShowHistCall Show call actions

ShowHistEvent Show event actions
ShowHistLitReq Show lit req actions

ShowHistMsg Show msg actions
ShowHistOpTask Show op task actions
ShowHistOther Show other actions
ShowHistProjTask Show proj task actions
ShowHistPubEvent Show pub event actions
ShowHistSales Show sales actions
ShowHistToDo Show todo actions

DefaultView The default view of the calendar

AutoForwardCalls

Automatically forward calls

AutoForwardMsgs Automatically forward messages
AutoForwardActions Automatically forward actions
AutoForwardAppts Automatically forward appointments
AutoForwardSales Automatically forward sales
AutoForwardOther Automatically forward other
SyncRecord Sync the record

ShowTotals Show totals

Showlcons Show icons

RefreshRate In seconds

PegRefreshRate Pegboard refresh rate in secs

337




Integrating With GoldMine

Name Description

Color The windows color value for the cal color
Timelncrement In minutes

FontSize Calendar font size

ShowWeekends Show weekends

FirstDayofWeek 0 =Sunday 7 = sat

nWeekends Bit mathed for days to consider the weekend
DayBegin Military time for the day beginning. 09:00
DayEnd Day end in military time - 17:00 for 5pm
CalShowActvCode Show activity code on cal
HistShowActvCode Show hist activity code

PublishiCal Publish iCal file?

PublishiCalPath

The path to where to publish ical - must be in URI format (must
start with file:, http:, or ftp:)

PublishiCalUser

If path is ftp or http, the login user name

PublishiCalPwd

If path is ftp or http, the login user pwd

PublishiCalUsersList

The users to publish

PublishicalAction

Publish actions

PublishicalAppt

Publish appointments

PublishicalCall

Publish calls

PublishicalEvent

Publish events

PublishicalLitReq

Publish literature requests

PublishicalMsg

Publish msgs

PublishicalOccasion

Publish occasions

PublishicalOpTask

Publish opportunity tasks

PublishicalOther

Publish other events

PublishicalProjTask

Publish project tasks

PublishicalPubEvent

Publish public events

PublishicalSales

Publish sales

PublishicalToDo

Publish to do's

PublishicalHistAction

Publish history actions

PublishicalHistCall

Publish call

PublishicalHistEvent

Publish event

PublishicalHistLitReq

Publish literature request

PublishicalHistMsg

Publish message

PublishicalHistOpTask

Publish op task

PublishicalHistOther

Publish other

338




Integrating With GoldMine

Name

Description

PublishicalHistProjTask

Publish project task

PublishicalHistPubEvent

Publish public event

PublishicalHistSales

Publish sales

PublishicalHistToDo

Publish todo

Publish2ICSFilterByDate

Dates to publish

Publish2ICSStartDate

The start date of the range

Publish2ICSEndDate

The end date of the range

PublishICSFilterActivCode

The activity code to filter on

PublishICSFilterRef

The reference code to filter on

PublishICSFilterByLink

Filter on the link? true or false

PublishHTML

Publish cal to HTML?

PublishHTMLPath

The path to where to publish the HTML - must be in URI format
(must start with file:, http:, or ftp:)

PublishHTMLUser

If path is ftp or http, the login user name

PublishHTMLPwd

If path is ftp or http, the login user pwd

PublishHTMLUsersList

The users to publish

PublishHTMLAction

Publish actions

PublishHTMLAppt

Publish appointments

PublishHTMLCall

Publish calls

PublishHTMLEvent

Publish events

PublishHTMLLitReq

Publish literature requests

PublishHTMLMsg

Publish msgs

PublishHTMLOccasion

Publish occasions

PublishHTMLOpTask

Publish opportunity tasks

PublishHTMLOther

Publish other events

PublishHTMLProjTask

Publish project tasks

PublishHTMLPubEvent

Publish public events

PublishHTMLSales

Publish sales

PublishHTMLToDo

Publish to do's

PublishHTMLHistAction

Publish history actions

PublishHTMLHistCall

Publish call

PublishHTMLHistEvent

Publish event

PublishHTMLHistLitReq

Publish literature request

PublishHTMLHistMsg

Publish message

PublishHTMLHistOpTask

Publish op task

PublishHTMLHistOther

Publish other

339




Integrating With GoldMine

Name

Description

PublishHTMLHistProjTask

Publish project task

PublishHTMLHistPubEvent

Publish public event

PublishHTMLHistSales

Publish sales

PublishHTMLHistToDo

Publish todo

Publish2HTMFilterByDate

Dates to publish
0 - today

1 - yesterday

2 - tomorrow

3 - this week

4 - last week

5 - next week
6 this month

7 last month

8 next month

9 - this year

10 - next year
11 - date range

Publish2HTMStartDate

The start date of the range

Publish2HTMEndDate

The end date of the range

PublishHTMFilterActivCode

The activity code to filter on

PublishHTMFilterRef

The reference code to filter on

PublishHTMFilterByLink

Filter on the link? true or false

PublishFB

Publish free busy time if PublishFB is TRUE

PublishFBPath

The path to where to publish free busy - must be in URI format
(must start with file:, http:, or ftp:)

PublishFBUser

If path is ftp or http, the login user name

PublishFBPwd

If path is ftp or http, the login user pwd

PublishFBAction

Publish actions

PublishFBAppt

Publish appointments

PublishFBCall

Publish calls

PublishFBEvent

Publish events

PublishFBLitReq

Publish literature requests

PublishFBMsg

Publish msgs

PublishFBOccasion

Publish occasions

PublishFBOpTask

Publish opportunity tasks

PublishFBOther

Publish other events

PublishFBProjTask

Publish project tasks

PublishFBPubEvent

Publish public events

PublishFBSales

Publish sales

PublishFBToDo

Publish to do's

340




Integrating With GoldMine

Name

Description

PublishFBHistAction

Publish history actions

PublishFBHistCall

Publish call

PublishFBHistEvent

Publish event

PublishFBHistLitReq

Publish literature request

PublishFBHistMsg

Publish message

PublishFBHistOpTask

Publish op task

PublishFBHistOther

Publish other

PublishFBHistProjTask

Publish project task

PublishFBHistPubEvent

Publish public event

PublishFBHistSales

Publish sales

PublishFBHistToDo

Publish todo

PublishFBFilterByDate

Dates to publish
0 - today

1 - yesterday

2 - tomorrow

3 - this week

4 - last week

5 - next week
6 this month

7 last month

8 next month

9 - this year

10 - next year
11 - date range

PublishFBStartDate

The start date of the range

PublishFBEndDate

The end date of the range

PublishFBFreq

Frequency in minutes

WRITECALENDARPREFS RETURN VALUES

WriteCalendarPrefs Return Values

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

-3 Cannot open the cal table

Reading Personal Preferences

The ReadPersonalPrefs function gets the personal preferences for the passed or

current user.

341




Integrating With GoldMine

READPERSONALPREFS INPUT NV PAIRS
ReadPersonalPrefs Input NV Pairs

Name Description

UserName User name passed

READPERSONALPREFS OUTPUT NV PAIRS
ReadPersonalPrefs Output NV Pairs

Name Description

UserName | User name passed

Title The user’s title

Dept The user’s department
Phone The user’s phone number
Fax The user’s fax

READPERSONALPREFS RETURN CODES
ReadPersonalPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Updating Personal Preferences

The WritePersonalPrefs function updates the personal preferences for the passed or
current user.

WRITEPERSONALPREFS INPUT NV PAIRS
WritePersonalPrefs Input NV Pairs

Name Description

UserName User name passed

WRITEPERSONALPREFS OUTPUT NV PAIRS
WritePersonalPrefs Output NV Pairs

Name Description

UserName | User name passed

Title the user’s title

Dept The user’s department
Phone The user’s phone number
Fax The user’s fax

342



Integrating With GoldMine

WRITEPERSONALPREFS RETURN CODES

WritePersonalPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Reading Record Preferences

The ReadRecordPrefs function gets the record preferences for the passed or current

user.

READRECORDPREFS INPUT NV PAIRS

ReadRecordPrefs Input NV Pairs

Name

Description

UserName

User name passed

READRECORDPREFS OUTPUT NV PAIRS
ReadRecordPrefs Output NV Pairs

Name Description

UserName User name passed

UseContactForTitle Use contact instead of company in title — 1 = cont, 0 company
SelectFieldContents When a field gets focus select its contents

AutoOpenOrgTree Open org tree when record object is maximized

ShowDatesInWords

Show user-defined dates in words

DateFormat

0=MMMd, yy
1=MMMM dd, yyyy
2=d MMM yy
3=d. MMM yy

4 =dd MMMM yy

RightAlignNumbers

Show numerics right-aligned

ShowSortByFieldInStatus

Show sort-by field on status bar

ZipValidationMode

0= none, 1 primary, 2 show zip dialog

Show9DigitZip Show 5 or 9 digits in zip code lookup validation window
UseDarkBgd Use a dark background color on the RO

LargeFont Use a large font — doesn't affect 640x480 resolution
LabelColor Windows color for the labels

DataColor Windows color for the data

343




Integrating With GoldMine

READRECORDPREFS RETURN CODES

ReadRecordPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Updating Record Preferences

The WriteRecordPrefs function updates the record preferences for the passed or
current user.

WRITERECORDPREFS INPUT NV PAIRS
WriteRecordPrefs Input NV Pairs

Name Description
UserName User name passed
UseContactForTitle Use contact instead of company in title — 1 = cont, 0 company
SelectFieldContents When a field gets focus select its contents
AutoOpenOrgTree Open org tree when record object is maximized
ShowDatesInWords Show user-defined dates in words
DateFormat 0=MMMd, yy

1=MMMM dd, yyyy

2=d MMM yy

3=d. MMM yy

4 =dd MMMM yy
RightAlignNumbers Show numerics right-aligned
ShowSortByFieldIinStatus | Show sort-by field on status bar
ZipValidationMode 0= none, 1 primary, 2 show zip dialog
Show9DigitZip Show 5 or 9 digits in zip code lookup validation window
UseDarkBgd Use a dark background color on the RO
LargeFont Use a large font — doesn’t affect 640x480 resolution
LabelColor Windows color for the labels
DataColor Windows color for the data

WRITERECORDPREFS RETURN CODES
WriteRecordPrefs Return Codes

Value Description

1 Success

0 No container passed

344



Integrating With GoldMine

Value Description

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Reading Schedule Preferences

The ReadSchedulePrefs function gets the schedule preferences for the passed or

current user.

READSCHEDULEPREFS INPUT NV PAIRS
ReadSchedulePrefs Input NV Pairs

Name Description

UserName User name passed

READSCHEDULEPREFS OUTPUT NV PAIRS
ReadSchedulePrefs Output NV Pairs

Name Description
UserName User name passed
ConflictOn Check for timing conflicts when scheduling

CarryCompletionNotesOnFollowUp

Carry over completion notes when scheduling follow ups

StartTimerOnComplete

Start timer when completing activities

ShowDetailsInActivityListingWindow

Show the details section in activity listing window

SyncContactWithActivityListingWindow

Sync the contact window with the activity listing window

WarnAboutCompleteMultiLinkActiv

Show alert when completing an activity with others
associated.

WarnAboutEditMultiLink Activ

Show alert when editing an activity with others associated

WarnAboutDeleteMultiLinkActiv

Show alert when deleting an activity with others
associated

READSCHEDULEPREFS RETURN CODES
ReadSchedulePrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Updating Schedule Preferences

The WriteSchedulePrefs function updates the record preferences for the passed or

current user.

345




Integrating With GoldMine

WRITESCHEDULEPREFS INPUT NV PAIRS
WriteSchedulePrefs Input NV Pairs

Name Description
UserName User name passed
ConflictOn Check for timing conflicts when scheduling

CarryCompletionNotesOnFollowUp

Carry over completion notes when scheduling follow ups

StartTimerOnComplete

Start timer when completing activities

ShowDetailsInActivityListingWindow

How the details section in activity listing window

SyncContactWithActivityListingWindow

Sync the contact window with the activity listing window

WarnAboutCompleteMultiLinkActiv

Show alert when completing an activity with others
associated.

WarnAboutEditMultiLink Activ

Show alert when editing an activity with others associated

WarnAboutDeleteMultiLink Activ

Show alert when deleting an activity with others
associated

WRITESCHEDULEPREFS RETURN CODES
WriteSchedulePrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Reading Alarm Preferences

The Read AlarmPrefs function gets the alarm preferences for the passed or current
user.

READALARMPREFS INPUT NV PAIRS
ReadAlarmPrefs Input NV Pairs

Name Description

UserName User name passed

READALARMPREFS OUTPUT NV PAIRS
ReadAlarmPrefs Output NV Pairs

Name Description

UserName User name passed

AlarmType 0 =none, 1 — pop up, 2 — taskbar notifications
AlarmsLead Time before an event that an alarm fires
AlarmFreq Scan for alarm every xx seconds

346




Integrating With GoldMine

Name

Description

TaskBarReminder

Reminder shown for x minutes

IgnoreSnooze Amount of to snooze an ignored alarm

PageAlarm Page user with alarm when not acknowleged within xx
minutes.

GMAlarmSound Path to the alarm sound

READALARMPREFS RETURN CODES
ReadAlarmPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Updating Alarm Preferences

The WriteAlarmPrefs function updates the alarm preferences for the passed or

current user.

WRITEALARMPREFS INPUT NV PAIRS
ReadAlarmPrefs Input NV Pairs

Name Description

UserName User name passed

AlarmType 0 =none, 1 — pop up, 2 — taskbar notifications
AlarmsLead Time before an event that an alarm fires
AlarmFreq Scan for alarm every xx seconds

TaskBarReminder

Reminder shown for x minutes

IgnoreSnooze Amount of to snooze an ignored alarm

PageAlarm Page user with alarm when not acknowleged within xx
minutes.

GMAlarmSound Path to the alarm sound

WRITEALARMPREFS RETURN CODES
WriteAlarmPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

347




Integrating With GoldMine

Reading Lookup Preferences

The ReadLookupPrefs function gets the lookup preferences for the passed or current

user.

READLOOKUPPREFS INPUT NV PAIRS

ReadLookupPrefs Input NV Pairs

Name

Description

UserName

User name passed

READLOOKUPPREFS OUTPUT NV PAIRS
ReadLookupPrefs Output NV Pairs

Name Description
UserName User name passed
SyncContact Sync the contact window with the search center window
InShrunkenMode Appear in shrunken mode when finding by
SyncDelay Lookup alignment delay when typing in tenths of a second
DefField Default lookup field O — contact, 1 = company
SelectAction When arec is selected in search cente

0 = move the search center window to the back

1 = close the search center window

2 = minimize the search center windowr

READLOOKUPPREFS RETURN CODES

ReadLookupPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Updating Alarm Preferences

The WriteLookupPrefs function updates the lookup preferences for the passed or
current user.

WRITELOOKUPPREFS INPUT NV PAIRS

WriteLookupPrefs Input NV Pairs

Name Description

UserName User name passed

SyncContact Sync the contact window with the search center window
InShrunkenMode Appear in shrunken mode when finding by

348




Integrating With GoldMine

Name Description

SyncDelay Lookup alignment delay when typing in tenths of a second
DefField Default lookup field O — contact, 1 = company
SelectAction When a rec is selected in search cente

0 = move the search center window to the back
1 = close the search center window
2 = minimize the search center windowr

WRITELOOKUPPREFS RETURN CODES
WriteLookupPrefs Return Codes

Value Description

1 Success

0 no container passed

-1 Not a master rights user or invalid user name
-2 user ini file doesn't exist

Reading Pager Preferences

The ReadPagerPrefs function gets the pager preferences for the passed or current

user.

READPAGERPREFS INPUT NV PAIRS
ReadPagerPrefs Input NV Pairs

Name Description

UserName User name passed

READPAGERPREFS OUTPUT NV PAIRS

ReadPagerPrefs Output NV Pairs

Name

Description

UserName

User name passed

GoldPagelnstalled

Is the goldpage application installed?

Terminal Terminal pager number

PIN The pin for the pager

MaxChars The number of max chars for a pager
PagerEmail Email page address

READPAGERPREFS RETURN CODES

ReadPagerPrefs Return Codes

Value Description

1 Success

0 No container passed

349




Integrating With GoldMine

Value Description

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Updating Pager Preferences

The WritePagerPrefs function updates the pager preferences for the passed or
current user.

WRITEPAGERPREFS INPUT NV PAIRS
WritePagerPrefs Output NV Pairs

Name Description

UserName User name passed
GoldPagelnstalled Is the goldpage application installed?
Terminal Terminal pager number

PIN The pin for the pager

MaxChars The number of max chars for a pager
PagerEmail Email page address

WRITEPAGERPREFS RETURN CODES
WritePagerPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Reading Miscellaneous Preferences

The ReadMiscPrefs function gets the miscellaneous preferences for the passed or
current user.

READMISCPREFS INPUT NV PAIRS
ReadMiscPrefs Input NV Pairs

Name Description

UserName User name passed

READMISCPREFS OUTPUT NV PAIRS
ReadMiscPrefs Output NV Pairs

Name Description

ShowWhatsNew Show whats new in the info center when logging in

350



Integrating With GoldMine

Name Description

Timeln24Hr Show time in 24/military style

DatelnLocalFormat Show dates in local format

ShowPageStatus Show status while paging

OldMenu Use the old GM4 style menu

EPOCH The EPOCH year

MSMailUser The MS outlook username if not the same as the GM user name

READMISCPREFS RETURN CODES

ReadPagerPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Updating Miscellaneous Preferences

The WriteMiscPrefs function updates the miscellaneous preferences for the passed or
current user.

WRITEMISCPREFS INPUT NV PAIRS
WriteMiscPrefs Input NV Pairs

Name Description

ShowWhatsNew Show whats new in the info center when logging in

Timeln24Hr Show time in 24/military style

DatelnLocalFormat Show dates in local format

ShowPageStatus Show status while paging

OldMenu Use the old GM4 style menu

EPOCH The EPOCH year

MSMailUser The MS outlook username if not the same as the GM user name

WRITEMISCPREFS RETURN CODES

WriteMiscPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

351




Integrating With GoldMine

Reading the Database Engine Type (7.0 or higher)

The GetDbEngineType function gets the database engine type based on a passed
table name.

GETDBENGINETYPE INPUT NV PAIRS

GetDbEngineType Input NV Pairs

Name

Description

Table

The table name you are trying to open - if not passed, assumed to be CONTACT1

GETDBENGINETYPE RETURN CODES

GetDbEngineType Return Codes

Value Description

0 No container passed

-1 Table name not passed
-2 Table name invalid

-3 Could not open table

1 Table is MSSQL

2 Table is Firebird

3 or higher Unknown DB type

Reading a List of GoldMine User Groups

The GetGMUserGroups function returns a list of GoldMine user groups and their

users.

GETGMUSERGROUPS OUTPUT NV PAIRS
GetGMUserGroups Output NV Pairs

Name

Description

GROUP

NV container for EACH group containing:
GroupNumber — the group’s internal number

Name — the name of the group

UserCount — the number of users in the group
UserList — a list of the users in the group delimited by ;

GETGMUSERGROUPS RETURN CODES
GetGMUserGroups Return Codes

Value Description

1 Success

0 No container passed

-1 Could not open data tables

352




Integrating With GoldMine

Creating or Updating GoldMine User Groups

The WriteGMUserGroup function creates or updates a GoldMine user group.

WRITEGMUSERGROUP INPUT NV PAIRS
WriteGMUserGroup Input NV Pairs

Name Description
Name The name of the group to update or create
RecIlD The record number of the group if updating

WRITEGMUSERGROUP RETURN CODES
WriteGMUserGroup Return Codes

Value Description

0 No container passed
-1 No group name

-2 Could not write data
-3 Not a master user

-4 Could not lock record
1 Success

Adding a GoldMine User to a Group
The AddGMGroupUser function adds a GoldMine user to a group.

ADDGMGROUPUSER INPUT NV PAIRS
AddGMGroupUser Input NV Pairs

Name Description
UserName The name of the user to add to the group
GroupName The group name or the group number to add the user to

ADDGMGROUPUSER RETURN CODES
AddGMGroupUser Return Codes

Value Description

0 No container passed

-1 No name or group passed

-2 Could not open users table
-3 Could not lock user record
-4 Could not find user record

-5 Invalid group passed

-6 Not a master user

353




Integrating With GoldMine

Value

Description

Success or user already group member

Removing a GoldMine User from a Group

The RemoveGMGroupUser function removes a GoldMine user from a group.

REMOVEGMGROUPUSER INPUT NV PAIRS

RemoveGMGroupUser Input NV Pairs

Name Description
UserName The name of the user to remove from the group
GroupName The group name or the group number to remove the user from

REMOVEGMGROUPUSER RETURN CODES

RemoveGMGroupUser Return Codes

Value Description

0 No container passed

-1 No name or group passed

-2 Could not open users table

-3 Could not lock user record

-4 Could not find user record

-5 Invalid group passed

-6 Not a master user

1 Success or user already group member

Creating or Updating an Opportunity or Project

The WriteOpProj function updates an opportunity or project.

WRITEOPPROJ INPUT NV PAIRS

In addition to the following, the user can pass the custom user defined fields (GM 6.6
or higher) that they have created.

WriteOpProj Input NV Pairs

Name Description

RecIlD If the item is an update — the recid of the item to update
OpID The opportunity rec id to attach to

RecType QorP

AccountNo The contact to attach to’s account no

User The gm user to assign the item to

Flags Flags for the item

354




Integrating With GoldMine

Name Description
Company The company this item involves
Contact The contact the item involves
Name Name of the item
Status The status of the item
Cycle The cycle of the item
Stage The item’s stage
Source The item’s source
F1 The F1 value
F2 or CompRecID The rec id of the company from Company field
F3 or Units The number of units this item involves
StartDate The start date
ClosedDate The date closed
CloseBy The date to close by
ForProb The probability of the item success
ForAmt The projected value of the item
CloseAmt The actual value of the item
Notes [tem notes
WRITEOPPROJ RETURN CODES
WriteOpProj Return Codes
Value Description
1 Success
0 No container passed

355






Working with GoldMine Plug-ins

This chapter contains information geared toward individuals with at least an
intermediate knowledge of programming.

GoldMine 7.0 supports integrations based on ActiveX controls or HTML. To use
either of these integration methods, you must first create an ActiveX control or an
HTML file or web site to integrate with.

Using ActiveX Plug-in Support

The ActiveX structure allows the most control and can be made with almost any
language, including C++, Delphi, VB and the .NET languages. When used in
conjunction with the other GoldMine APlIs, Active X is extremely powerful.

Within the ActiveX support, there are 5 methods that can be implemented in your
control to allow for stronger interaction with GoldMine. These functions are not
necessary to implement:

public void GMnStart (1 ong hwd)

This is the only function that passes a parameter. The parameter is the HWND
(window handle) of the container window in GoldMine. You can then use the
Windows API SendMessage() call to control what happens to the container. This is
for situations where you want to implement a Close button, since the control is late
bound in GoldMine, and cannot expose events.

public void GVnActi vate()

357



Integrating With GoldMine

This function will tell you when the user has given your control’s container focus in
GoldMine.

public void GWLost Focus()
Called whenever the user gives focus to another object when your control had focus.
public void GVinDestruct ()

Called when the window is just about to close. This allows you the opportunity to
clean up.

public void GvHandl eFi | e( BSTR sPat h)

Used to open associated files with your plug-in. the passed Path is the path to the file
itself that your plug-in described it could handle.

Using HTML Plug-in Support

HTML plug-in support also has great potential. The HTML will attempt to call a
JavaScript or VBScript function named like the last 3 ActiveX methods, with exactly
the same capabilities:

GMOnAct i vat e()
G\WLost Focus()
GMOnDest ruct ()

The GMOnStart() function is not supported in HTML.

Plug-In Description File

The plug-in description file is a well formed XML file that describes the plug-in. The
extension for the file is GME (for GoldMine Extension).

HTML Plug-in Description File

The following example shows the structure for the HTML plug-in.

<Pl ugl nDef s>
<Pl ugl nDef >
<URL>http://gmail.googl e.com gnai | </ URL>

<QueryString>q=&t; & t; &np; Address1&gt; &gt;, &l t; & t; &np; G ty&gt; &gt ;,
& t; & t; &np; State&gt; &gt;, & t; & t; &np; Zi p&gt ; &gt ; </ QueryStri ng>

<Descri ption>
<Language Local e="1033" |sDefaul t="1">
<Name>G Mai | </ Nane>
<Publ i sher >Googl e</ Publ i sher >

<Descri pti on>Launches Googl e's Gmi l
Servi ce</ Descri pti on>

<Menu>Launch GVAI L</ Menu>
<MenuPat h>Web Based Tool s\\ Googl e</ MenuPath >
</ Language>
<Language Local e="4000">

358



Integrating With GoldMine

<Name>eegay al e- may</ Nanme>
<Publ i sher >o00gl e- Gay</ Publ i sher >
<Descri pti on>aunches-Lay oogl e-Gay’s eegay al e- may

Urvi ce- Say</ Descri pti on>

<Menu>aunch- Lay eegay al e- may</ Menu>
<MenuPat h>eb- WAy ased- Bay ool s- Tay\\ oogl e- Gay</ MenuPat h

</ Language>
</ Descri ption>
<OnDemand>1</ OnDemand>
<Startup>1</Startup>

<Mul ti pl el nst ance>0</ Mul ti pl el nst ance>

<Modal >0</ Modal >
<Def aul t Pos>
<t op>50</t op>
<l eft >50</ | ef t >
</ Def aul t Pos>
<Def aul t Si ze>
<wi dt h>800</ wi dt h>

<hei ght >600</ hei ght >

</ Def aul t Si ze>
<Vi si bl e>1</ Vi si bl e>
<l conFi | e>googl e. i co</| conFi |l e>

<I| nt er nal Name>GOOCGLE_MAI L</ | nt er nal Nanme>

</ Pl ugl nDef >
</ Pl ugl nDef s>

The root node must be PlugInDefs, and as the name implies, multiple plug-ins can
be installed under one definition file. For each plug-in, there is one PlugInDef. The

child nodes for PlugInDef are:

Node

Description

<URL>

The URI for the html or site — must be http://, https:// or
file:l/

<QuerysString>

The querystring to be tacked on to the end of the URL.
Can contain GoldMine field macros that will be
evaluated on launch of the plug-in. The macro wrapping
structure is <<field>>, like <<&Contact>> or
<<Contact1->AccountNo>>. Please note that you must
XMLEncode the macros like above.

<Description>

These values describe the item to the user.

<Language>

Uses the locale code associated with the target
language. One Langauge structure must be marked as
IsDefault, and this one is used in case the target
language is not supported by the plug-in. Always use
XML entities in place of extended characters. ( N would
be &#209;)

<Name>

The dialog nhame and used for security

<Publisher>

Your company hame — creates a sub menu under the

359




Integrating With GoldMine

Plug-ins menu if MenuPath not passed

<Description> used in the Help->About Plug-ins button (not there yet)
<Menu> the text that the user sees for a menu item.
<MenuPath> Creates a hierarchical set of menus, with each
submenu delimited by “\’ — double backslashes
<OnDemand> determines if the plug-in is added to the plug-ins menu.
1 =True, 0 = False. If false — then the item is started up
with GoldMine.
<StartUp> determines if the item is started up with GoldMine. This

is for situations where you want it to come up — but if the
user closes the window — you want them to be able to
access the plug-in via a menu. 1 = startup with
GoldMine, 0= don't start with GoldMine.

<MultipleInstance>

determines if multiple instances of the plug-in are
allowed. 1 = allow multiple instances, 0 = false. If false,
if the user chooses the menu item for that plug-in — then
GoldMine will bring that window to the front and give it
focus. non-OnDemand, Modal and non-visible plug-ins
are automatically single instance.

<Modal> determines if any action can occur outside of the
window in GoldMine. 1= Modal, 0 = Modeless.
Startup/non-OnDemand items cannot be modal. Modal
items are strictly single instance.
<DefaultPos> describes the coordinates where your dialog will first
show up. This is only used the first time the plug-in is
run, and is ignored for Modal plug-ins, which are
automatically centered in relation to the GoldMine
window.
<top> Number of pixels from the top of the screen.
<left> Number of pixels from the left of the screen.
<DefaultSize> describes the height and width of the dialog for first time
use, or for modal windows — which cannot be resized.
<width> Width of the window in pixels.
<height> Height of the window in pixels.
<Visible> determines if the user can see the window. Not
recommended for HTML based plug-ins.
<lconFile> if you have an ico file that you want the item to use, then

put it in the plug-ins folder and specify it here.

<InternalName>

this is a name that you give to your plug-in that can then
be used in the INI files to block/grant access. If it is not
passed it will be made up of a concatenation of the
Publisher name and the Name fields for the default
locale, using only the following characters:

“ABCDEFGHIJKLMNOPQRSTUVWXYZ_1234567890

ActiveX Plug-in Description File

The following example shows the structure for the ActiveX plug-in.

<Pl ugl nDef s>
<Pl ugl nDef >

360



Integrating With GoldMine

<Pr ogl D>nmyApp. d assl nst ance</ Pr ogl D>
<Instal | er>myAppl nstal |l er. exe</Installer>
<Descri pti on>
<Language Local e="1033" |sDefault="1">
<Nane>My Fantastical App</ Name>
<Publ i sher >JCS</ Publ i sher >

<Descri ption>This app does it
al 'l </ Description>

<Menu>The nost amazi ng app EVER</ Menu>

<MenuPat h>You\ \ Can\\ Expect\\ To
Be\ \ AVAZED</ MenuPat h >

</ Language>
<Language Local e="4000">
<Nane>eegay al e- may</ Nane>
<Publ i sher >00gl e- Gay</ Publ i sher >

<Descri pti on>aunches-Lay oogl e-Gay’s eegay
al e-may Urvi ce- Say</ Descri ption>

<Menu>aunch- Lay eegay al e- may</ Menu>

<MenuPat h> ou- Yay\\ an- Kay\\ Expect - ay\\ o-tay ebay\\ AMAZED-
AY</ MenuPat h >

</ Language>
</ Descri ption>
<OnDenand>1</ OnDemand>
<Startup>1</Startup>
<Mul ti pl el nst ance>0</ Mul ti pl el nst ance>
<Modal >0</ Modal >
<Def aul t Pos>
<t op>50</t op>
<l ef t >50</| ef t >
</ Def aul t Pos>
<Def aul t Si ze>
<wi dt h>800</w dt h>
<hei ght >600</ hei ght >
</ Defaul t Si ze>
<Vi si bl e>1</ Vi si bl e>
<l conFi | e>MYAPP. i co</ | conFi | e>
<I nt er nal Name>BEST_APP_EVER</ | nt er nal Narme>

<Handl edFi | eExt ensi ons>doc; x| s; pdf ; t xt ;i ni </ Handl edFi | eExt ensi on
s>

<Met hods>
<Met hod>
<Language Local e="1033" |sDefaul t="1">
<Menu>Launch The app</ Menu>

361



Integrating With GoldMine

</ Language>
</ Met hod>
<Met hod cal | =" Confi gure" >
<Language Local e="1033" |sDefault="1">
<Menu>Configure the bliss</Menu>
</ Language>
<Language Local e="4000">
<Menu>Onfi gure-Kay ah-they iss-
bl ay</ Menu>
</ Language>
</ Met hod>
</ Met hods>
</ Pl ugl nDef >
</ Pl ugl nDef s>

Although it is very similar to the HTML plug-in description, there are 2 primary
differences: the ProglID and Installer nodes instead of the URL and QueryString
nodes.

The ProglD is the ProgID for your ActiveX control, and the Installer is the installer
name for the application. The Installer should be located in a folder named Installers
under the plug-in directory.

There is also the “HandledFileExtensions” element that can be added to handle files
of certain extensions with your plug-in internally in GoldMine. This means that if
there is a linked document, email attachment, or other internally attached file that
would normally launch a third party application, the path to the file will be passed
to your plug-in via the GMHandleFile call. This does not mean external to
GoldMine that opening that file will launch GoldMine and your plug-in. However, it
should be a simple task to write an .exe wrapper for your plug-in (since its ActiveX
based, after all) and associate the file types to that exe wrapper.

The Methods Section allows you to call custom methods in your application. When
in use the Description’s Menu node becomes a sub-menu with all of the methods
that you have described. A method is described by the Method node with an
optional attribute “call” which tells GoldMine what internal method to call. The
internal method must be public and expect no parameters. It must also return
nothing (void or sub). The language portion works exactly like the description
node’s does - except it only has the Menu entry.

Security and Plug-in Directories

Using GML.INI or the User.INI, a user/admin can block the use of plug-ins
altogether, block individual plug-ins and also add user specific directory for more
plug-ins.

362



Integrating With GoldMine

Security

For security, GM.INI has precedence over the user INI file. There are two methods -
Optimistic and Pessimistic. You can have different methods for GM.INI and the user
INI, but Pessimistic will win out.

The Optimistic method is as follows:

[ Pl ugl ns]
al | ow_by_defaul t=1

The Pessimistic method is as follows:

[ Pl ugl ns]

deny_by_ defaul t=1
If you had allow_by_default=0, then this would be the same as deny_by_default=1 -
and vice versa. If the keys are missing, then the method is assumed to be Optimistic.

If you are using the Optimistic method, then you do not have to add anything
besides blocked plug-ins to the INI files. If you are using the Pessimistic method,
then you must give a plug-in permission to run.

For example, if you have a plug-in with a Name node of “Evil Plugin ...”

The INI name for this would be EVILPLUGIN unless you added the InternalName
element to your plug-in description.
To block the plug-in with Optimistic mode:

[ Pl ugl ns]
al | ow_by_defaul t=1 or deny_by_default=0
EVI LPLUG N=0

To allow a plug-in with Pessimistic mode:

[ Pl ugl ns]
deny_by_default=1 or allow by default=0
GOODPLUG N=1

Adding a Local Plug-in Directory

By default - the plug-in directory is under %SysDir% /Plug-ins and in server installs
this means that all users will have the plug-ins under that folder. If a user wanted to
add his own local plug-in directory - he could add it to his user INI:

[ Pl ugl ns]
Local Pat h=c: \ per sonal \ GWPI ugl ns

The user will still get the global level programs (assuming they’re not blocked) - so
make sure there’s no duplication between the two.

Sample Plug-ins
The following are examples of the GoldMine plug-in capabilities

363



Integrating With GoldMine

gmail.gme

This plug-in opens a browser window to the Google mail address. It demonstrates
the basic capability of opening a browser window from GoldMine.

<?xm version="1.0" encodi ng="UTF-8"?>
<Pl ugl nDef s>
<Pl ugl nDef >
<URL>http://gnmail.googl e. conl gmai | </ URL>
<Descri pti on>
<Language Local e="1033" IsDefault="1">
<Name>G Mai | </ Nanme>
<Publ i sher >Googl e</ Publ i sher >

<Descri pti on>Launches Googl e's Gmi l
Servi ce</ Descri pti on>

<Menu>Launch GMAI L</ Menu>
</ Language>
</ Descri ption>
<OnDemand>1</ OnDemand>
<Startup>1</Startup>
<Mul ti pl el nst ance>0</ Mul ti pl el nst ance>
<Modal >0</ Modal >
<Def aul t Pos>
<t op>50</t op>
<l ef t >50</ 1 ef t >
</ Def aul t Pos>
<Defaul t Si ze>
<wi dt h>800</ wi dt h>
<hei ght >600</ hei ght >
</ Defaul t Si ze>
<Vi si bl e>1</ Vi si bl e>
</ Pl ugl nDef >
</ Pl ugl nDef s>

External.gme

This plug-in allows a user to store more than the 254 custom fields for a contact
record externally. Users can select any contact record, then select the plug in, to
either add new information or update existing information depending on what is
found in the database.
<?xm version="1.0" encodi ng="UTF- 8" ?>
<Pl ugl nDef s>
<Pl ugl nDef >
<URL>http://1 ocal host/ gnpl us. asp</ URL>
<QueryString>account no=& t; & t; &np; Account no&gt ; &gt ; </ QueryStri ng>
<Descri pti on>
<Language Local e="1033" |sDefault="1">

364



Integrating With GoldMine

<Name>Extra Fi el ds</ Nanme>
<Publ i sher >Robi e</ Publ i sher >
<Descri pti on>Access External Tabl es</Description>
<Menu>Access External Tabl es</ Menu>
</ Language>
</ Descri ption>
<OnDemand>1</ OnDemand>
<Mul ti pl el nst ance>1</ Ml ti pl el nst ance>
<Mbdal >0</ Modal >
<Def aul t Pos>
<t op>50</t op>
<l ef t >50</ 1 ef t >
</ Def aul t Pos>
<Defaul t Si ze>
<wi dt h>600</ wi dt h>
<hei ght >590</ hei ght >
</ Defaul t Si ze>
<Vi si bl e>1</ Vi si bl e>
</ Pl ugl nDef >
</ Pl ugl nDef s>

gmplus.asp

Following is the source listing for gmplus.asp, which is the corresponding ASP page
for the External.gme plug-in.

Note: The following code sample uses text wrapping in order to fit the
sample on these pages. Make sure that the lines in your actual code do not
wrap.

<ht m >

<body>

<h3>Ext ernal Location |nformation</h3>

<%

Di m action

Di m DSNConnect i on

Di m SQ.Tabl e

"Update the DSN i nformation here to access the SQL dat abase HERE.

DSNConnection = "Driver=SQ
Server ; Ser ver =ConpanySer ver Nane; Dat abase=GWl us; Ui d=sa; Pwd=sa; "

"Update to table in database
SQ.Tabl e = " CGol dPI us"

'add/edit additional fields here
Di m strdocunent, strlocation, strextrastuffl, straccountno
"add/edit additional fields here too

strdocunment = Repl ace( Request ("document"), ottt

strlocation = Repl ace(Request ("l ocation"), ottt

365



Integrating With GoldMine

strextrastuffl = Repl ace(Request ("extrastuff1"), "'", "'"'")
straccountno = Repl ace( Request ("accountno"), "'", "''")

'"This section updates fields if the accountno is found in the database
if Request("action")="update" then

set conn=Server. Creat eCbj ect (" ADCDB. Connecti on")
conn. Open ( DSNConnect i on)

"This is the SQL statenent that updates information, so you will need to
add/edit fields here too

set rs = Server. Creat eCbj ect ("ADODB. recordset")

strSQL = "UPDATE "+ SQ.Tabl e +" SET docunent = '" + strdocunent +"',
location ='" + strlocation + "', extrastuffl ="'" + strextrastuffl +
"' WHERE accountno = '" + straccountno + "'"

Conn. Execut e (strSQ.)

conn. cl ose
set conn = not hi ng
set strSQ. = nothing

"This does a redirect to the update page once the data is entered into the
SQL dat abase

Response. wite("<neta http-equiv=refresh
cont ent =0; ur | =gnpl us. asp?account no=" + straccountno + ">")

L I I R O O O

Rk I S O S

"This section does the addition of the fields if they are not found in the
dat abase

el se i f Request("action")="add" then

set conn=Server. Creat eCbj ect (" ADCDB. Connecti on")
conn. Open ( DSNConnect i on)

"This adds new information if it is not found in the database
set rs = Server. CreateChj ect ("ADCDB. recordset")

strSQL = "I NSERT | NTO "+ SQ.Tabl e +"
(account no, docunent , | ocati on, extrastuffl1l) VALUES ('" + straccountno +
"t,'" + strdocunent + "','" + strlocation + "','" + strextrastuffl +
Wy

Conn. Execute (strSQ.)

conn. cl ose
set conn = not hi ng
set strSQ. = nothing

"This does a redirect to the update page once the data is entered into the
SQL dat abase.

366



Integrating With GoldMine

Response. AddHeader "Location", "/gnplus.asp?accountno="" + straccountno +

end if

set conn=Server. Creat eCbj ect (" ADCDB. Connecti on")
conn. Open ( DSNConnect i on)

set rs = Server. Creat eChj ect ("ADCDB. recordset")
rs. Open "SELECT accountno, docunent, |ocation, extrastuffl from"+

SQLTabl e +" where accountno ='"+ straccountno + , conn

L R I G O O R R O O O

kkkkkkhkkhkkhkkkhkkk*x

"if the AccountNo is NOT found, display the ADD form
if rs.eof AND rs.bof then
%>
<form acti on="gnpl us. asp" net hod="get">
<i nput type="hidden" nane="action" val ue="add">

<% Response. Wite("<input type=hidden name=accountno val ue="+ straccountno
) 0

<t abl e border="1">
<tr>

<t d>Docunent </t d><t d><i nput type="text" nane="document"
size="30"></td>

<tr>
</[tr>

<td>Locati on</td><t d><i nput type="text" nane="location"
size="30"></td>

<tr>
</[tr>

<td>Extra Stuff 1</td><td><input type="text" name="extrastuffl"
size="30"></td>

</[tr>
</t abl e>
<i nput type="Submt" val ue="add">
</fornp

<%***********************************************************************

R S R R O O R

el se

"if the AccountNo IS found, display the UPDATE form
%

<form acti on="gnpl us. asp" met hod="get">

<i nput type="hi dden" nanme="action" val ue="update">

<% Response. Wi te("<input type=hidden nane=accountno val ue="+ straccountno
) 0

<t abl e border="1">
<tr>

367



Integrating With GoldMine

<t d>Docunent </t d><t d><i nput type="text" name="docunent" val ue="<%
rs("docunment”) %" size="30"></td>

</[tr>
<tr>

<td>Locati on</td><td><i nput type="text" name="location" val ue="<%
rs("location") %" size="30"></td>

</[tr>
<tr>

<td>Extra Stuff 1</td><td><input type="text" nanme="extrastuffl"
val ue="<% rs("extrastuffl") %" size="30"></td>

</[tr>
</t abl e>
<i nput type="Submit" val ue="update">
</forne

<%***********************************************************************

R S R R R o S

end if
end if
%>
</ body>
</htm >

368



Integrating With GoldMine

Using Xbase Expressions

This chapter contains information geared toward individuals with at least an
intermediate knowledge of programming.

Improper use of these functions may result in data that is not recoverable. Be sure to
back up your data frequently.

{EP For details on data backups, see “Backing up Data” in Maintaining GoldMine.

GoldMine offers a variety of Xbase expression functions to:

e Manipulate data for comparison, such as for creating filters
and groups.

e Store data, such as for global replacements and updates to
field data (LOOKUP.INI).

¢ Evaluate and return data when using DDE and GMXS32.DLL
function calls.

To ensure that your Xbase functions work correctly, GoldMine also features a real-
time expression tester. To activate the tester on an active record window, press Ctrl-
Shift-D.

369



Integrating With GoldMine

(EP Xbase functions are also known as dBASE functions.

Filter expressions work equally well on Xbase or SQL tables. With SQL, the Xbase
filter is evaluated on the client side, not the server side.

The following pages list Xbase functions in three sections:
e Function/Parameter Types
e Conditionals, Operators, and Logical Evaluators

e Xbase Functions

Function/Parameter Types

Xbase functions recognize and return several types of data. These data types
represent the format of the data, such as a number. To properly evaluate and return
a value, a function must include the correct parameter types. For example, a function
may require that a date be passed as a parameter. Trying to pass a name to the
function would not be accepted. In many cases, you can use a special function to
convert one data type to another.

Data types may be referenced literally, either as a field name of a specific type, or as
the result of an Xbase function.

The following list describes valid data types for Xbase functions and shows
examples of use when referenced as a literal, field value, or function result.

String Sequence of any printable character.
Literal use: "my string"
Field use: Upper(Contact1->Company)
Function Use:  Upper(Substr("test123",5,3))
Date Special numeric value representing a date.
Literal use: {03/10/1999}
Field use: DTOS(Contact2->UBirthday)
Function use:  DTOS(DATE())
Numeric Value representing a number.
Literal use: 100
Field use: STR(Contact2->UBalance)
Function use:  STR(100 + VAL("100")
Boolean Value that results whenever a comparison is made. Boolean values are either
TRUE or FALSE.

For an expanded description of Boolean expressions, see “Using Boolean Expressions” in the online
Help.

Conditionals, Operators, and Logical Evaluators

A function can manipulate values by using one of the following;:

370



Integrating With GoldMine

e Conditional: Compares one value to another, using the
specified standard or condition, such as “equal to,” “greater
than,” and so on.

e Operator: Performs an arithmetic operation on the values,
such as addition or multiplication.

e Logical evaluator: Compares values as a true/false condition,
so that a value either meets or fails the standard for selection.
This type of comparison is also known as a Boolean operator.

You can use the following conditionals, operators, and logical evaluators in
conjunction with the Xbase functions.

Conditionals

Conditional:

Description:

Applies to:

Examples:

Conditional:

Description:

Applies to:

Examples:

>
Greater than

All types

1>2 returns: FALSE
"BBC">"ABC" returns: TRUE
Date()>Date()-10 returns: TRUE

<

Less than

All types

300<400 returns: TRUE
"MARCELA"<"NELSON" returns: TRUE
Date() < Date()-7 returns: FALSE

371



Integrating With GoldMine

Conditional: <>

Description:  Greater/Less than (not equal)

Applies to: All types

Examples: 250<>2500 returns: TRUE

"ABC"<>UPPER("abc  returns: FALSE
")

Date()<>Date()+3 returns: TRUE

Conditional: >=

Description:  Greater than or Equal to

Applies to: All types

Examples: 100>=99 returns: TRUE
"ABC">="BBC" returns: FALSE

Date()+10>=-Date() returns: TRUE

Conditional: <=
Description:  Less than or equal to

Applies to: All types

Examples: 100<=99 returns: FALSE
"ABC"<="BBC” returns: TRUE
Date()+10<=Date() returns: FALSE
Operators
Operator: +
Description: Adds one value to another value
Applies to: All types
Examples: "ABC"+"DEF returns: "ABCDEF"
100+23 returns: 123
Date()+7 returns: date one week from today

372



Integrating With GoldMine

Operator:

Description:

Applies to:

Examples:

Operator:

Description:

Applies to:

Example:

Operator:

Description:

Applies to:

Example:

Operator:

Description:

Applies to:

Example:

Logical:
Description:

Example:

Logical:
Description:

Example:

Subtracts one value from another value
Numeric and Date types
123-100 returns: 23

Date()-140 returns: date of two
weeks ago

/
Divides one number by another
Numeric type

100/4 returns: 25

*

Multiplies one value by another

Numeric type

100*5 returns: 500
%

Modulus

Numeric type

100%33 returns: 1

Logical Evaluators

.OR.
Returns TRUE if either condition is TRUE
State="CA" .OR. Zip="99999"

AND.
Returns TRUE only if all conditions are TRUE

Company="FrontRange Solutions" .AND. Phone1="(310)454-6800"

373



Integrating With GoldMine

Logical: .NOT.
Description: Returns the opposite of the condition being tested
Example: .NOT. City="San Francisco”

Xbase Functions

GoldMine recognizes four types of Xbase functions as valid

e String: Use primarily for manipulating string data types. A
string function can return other data types.

e Date: Use for any date-related operations. A date function can
return other data types.

e Numeric: Use for numeric operations. A numeric function can
return other data types.

e Miscellaneous: Additional functions that fall outside of the
previous three categories of data types. These may return any
type of data.

For convenience, functions are listed under these four categories, according to how
they are most typically used. For example, under “Date Functions,” you will find
those functions that return numeric or string types from dates.

String Functions

ALLTRIM(<string>) Returns a string value with both leading and trailing spaces
from <string>.
Return type: String
Example
“I+ALLTRIM(* This is a test “)+7T
returns [This is a test].

ASC(<char>) Returns the ASCII decimal value for <char>.
Return type: Numeric
Example
ASC("A")
returns 65.

AT(<string1>, Returns the first position of <string1> in <string2>.
<string2>) Return type: String

Example

AT(“a”, “once upon a time”)

returns 11.

374



Integrating With GoldMine

CHR(<byte>)

FMTTIME(<time>)

HTTPSTR(<string>)

lIF(<condition>,<true
result>,<false result>)

LEFT(<string>, <length>)

LEN
LENGTH(<string>)

LOWER(<string>)

LTRIM(<string>)

Returns the ASCII character value for <byte>.
Return type: String

Example

CHR(65)

returns A.

Returns a character string (hh:mmap format) derived from <time>.
Return type: String

Example

FMTTIME(TIME())

returns 2:28p.

Returns <string> with all nonletter/number characters replaced with
Y%values.

Return type: String

Example

HTTPSTR(“www.Website.com/some dir/”)

returns www.Website.com%2Fsome%20dir%2F.

Returns either <true result> or <false result>, depending on the
Boolean evaluation of <condition>.

Return type: Logical

Example

IIF (99 < 100, “Value is Less than 1007, “Value is more than 100”)
returns “Value is Less than 100”.

Returns the leftmost <length> characters from <string>.
Return type: String

Example

LEFT("Four score and seven",10)

returns Four score.

See LENGTH below.

Returns the number of characters in <string>.
Return type: Numeric

Example

LENGTH("This is a test")

returns 14.

Returns <string> in lower-case letters.
Return type: String

Example

LOWER('TEST THIS FUNCTION")
returns test this function.

Returns <string> with all leftmost spaces removed.
Return type: String

Example

“I"+LTRIM(" Thisisatest "+""

returns [This is a test ].

375



Integrating With GoldMine

LTRIMPAD(<string>, Returns <string> with leftmost spaces removed and padded to
<length>, <fill>) <length> with <fill> character.

Return type: String

Example

"T+LTRIMPAD(" 1341", 10, "0" )+""

returns 0000001341.

MID(<string>, <start>, Returns the string of <length> characters starting at position <start>
<length>) within <string>.

Return type: String

Example

MID("Four score and seven",6,5)

returns score.

PAD(<string>, <length>, Returns <string> padded to <length> with the <fill> character.
<fill>, <mode>) <fill>

This optional parameter defaults to a space.

<mode>

can be 0 for right pad (default), 1 for centered, and 2 for left pad.
Return type: String

Example

PAD(“TEST”, 8, “x”, 1)

returns XxxTESTxX.

PADL (<string>, <length>, Returns <string> padded to <length> with the <fill> character.
<fill>) <fill>
This optional parameter defaults to a space. PADL pads from the left.
Return type: String
Example
PADL("TEST", 8, "X")
returns xxxxTEST.

PADR(<string>, <length>, Same as PADL, except that PADR pads the string to the right.
<fill>) Return type: String

Example

PADR("TEST", 8, "X")

returns TESTxxxx.

PROPER(<string>) Returns a string in which the first letter of each word in <string> is
capitalized, and the all following letters are lower-case.
Return type: String
Example
PROPER("fighting IRISH")
returns Fighting Irish.

RAT(<string1>,string2>) Returns the last position of <string1> in <string2>.
Return type: Numeric
Example
RAT('t", "this is a test.")
returns 14.

376



Integrating With GoldMine

RIGHT(<string>,
<length>)

RTRIM(<string>)

STR(<value>,<length>,
<decimals> <fill char>)

STRTRAN(<string1>,
<string2>, <string3>)

SUBSTR(<string>,
<start>, <length>)

TRIM(<string>)

UPPER(<string>)

WORD(<string>, <pos>)

Returns the rightmost <length> characters from <string>.
Return type: String

Example

RIGHT("Four score and seven",5)

returns seven.

Returns <string> with all rightmost spaces removed.
Return type: String

Example

"'+ RTRIM(" Thisisatest "+"]"

returns [ This is a test].

Returns the numeric <value> formatted as a string. The <value>
parameter is required. All other parameters are optional. The <length>
parameter pads the number to the left with spaces or with the <fill char>
if specified.

Return type: String

Example

STR(456, 7, 2,"0")

returns 0456.00.

Returns a string based on <string1> with all occurrences of <string2>
translated to <string3>.

Return type: String

Example

STRTRAN("A1B1C1D1", "1" "X")

returns AXBxCXxDX.

Returns the string of <length> characters starting at position <start>
within <string>.

Return type: String

Example

SUBSTR("Four score and seven",6,5)

returns score.

See RTRIM.

Returns the <string> in upper case.
Return type: String

Example

UPPER("this is a test")

returns THIS IS A TEST.

Returns the <pos> word within <string>.

Return type: String

Example

WORD('"this is a test for the WORD function", 4)
returns test.

377



Integrating With GoldMine

Date Functions

ACCDATE(<string>)

AGE(<date>)

CTOD(<string>)

DATE()

DAY (<date>)

DOBINDAYS(<date>)

DOW(<date>)

Returns a date value for <string>, where <string> is a valid GoldMine
AccountNo.

Return type: Date

Example

ACCDATE(Contactl->ACCOUNTNO)

returns 4/20/99.

Returns the age in years since <date>.
Return type: Numeric

Example

AGE(Contact2->UBDATE)

returns 32.

Returns a date value based on <string>. The <string> parameter should be
in the format: mm/dd/yy.

Return type: Date

Example

CTOD("4/20/99")+5

returns 4/25/99.

Returns today’s date in date format. To add/subtract from this value, simply
use the number of days in your expression. For example: DATE()+7 will
add seven days to today's date.

Return type: Date

Example

Assuming today’s date is 4/20/99, DATE()+7

returns 4/27/99.

Returns that day of the month for the specified <date>.
Return type: Numeric

Example

DAY(DATE())

returns 18.

Returns the number of days until the month/day in <date>.
Return type: Numeric

Example

DOBINDAYS(STOD("19681024"))

returns 232.

Returns the day of the week in numeric format; for example, Sunday = 0,
Monday = 1, and so on

Return type: Numeric

Example

DOW/(STOD("19990909")

returns 4.

378



Integrating With GoldMine

DOY(<date>)

DTOC(<date>)

DTOS(<date>)

MONTH(<date>)

STOD(<string>)

WDATE(<date>,
<format>)

Returns the number of days elapsed from the beginning of the year in
<date> to the month/day in <date>.

Return type: Numeric

Example

DOY(Contact2->UDATE)

returns 220.

Returns a character string (MM/DD/YY format) derived from <date>.
Return type: String

Example

DTOC(Contact2->UDATE)

returns 10/24/99.

Returns a character string (YYYYMMDD format) derived from <date>.
Return type: String

Example

DTOS(Contact2->UDATE)

returns 19991024.

Returns that numeric month for the specified <date>.
Return type: Numeric

example:

Example

MONTH(Contact2->UDATE)

returns 2.

Converts a <string> value into a date value. <string> should be in the
format YYYYMMDD.

Return type: Date

Example

STOD("20000121")

returns 1/21/2000.

Returns the <date> formatted in variety of ways, based on the optional
parameter <format>.

<format>

0 mm, dd, yy Jan 21, 00

1 ddd, mmm dd, yy Thu, Jan 21, 00

2 mmm dd Jan 21

3 Long date style Thursday, Jan 21, 2000

The Long date style format 3 is taken from the Windows Regional Settings.
Return type: String

Example

WDATE(Contact2->UDATE, 1)

returns Thu, Jan 21, 00.

379



Integrating With GoldMine

YEAR(<date>)

Returns the numeric year value of <date>.
Return type: Numeric

Example

YEAR(Contact2->UDATE)

returns 2000.

Numeric Functions

CEILING(<number>)

COUNTER(<string>,
<inc>, <start>,
<action>)

FLOOR(<number>)

INT(<number>)

Returns the nearest integer that is greater than or equal to the numeric
expression.

Return type: Numeric

Example

CEILING(3.1)

returns 4.

Returns a sequence of consecutive numbers each time the expression is
evaluated. Each of the parameters is described below.

<name>

This counter must be unique, and can be a maximum of 10 characters.
<inc>

Each evaluation of the function increments the counter by the <inc> value.
<start> and <action>

Optional parameters

When <action>is 1, the <start> value is used to reset the counter. The
counter is deleted when <action>is 2.

COUNTER works similarly to the SEQUENCE function. The key difference
is that COUNTER stores the count value between GoldMine sessions, and
it is shared by all GoldMine users. The COUNTER function updates a
database counter, so COUNTER is much slower than SEQUENCE, which
updates a memory counter. The SEQUENCE counter is local to the
operation, and its count is lost at the end of the operation.

GoldMine can track an unlimited number of uniquely named counters. The
counter values are stored in the LOOKUP table.

Return type: Numeric

Example

COUNTER("InvoiceNo", 1, 1000)

returns 1000.

Returns the nearest integer that is less than or equal to the numeric
expression

Return type: Numeric

Example

FLOOR(2.8)

returns 2.

Returns the integer part of a number without rounding.
Return type: Numeric

Example

INT(123.95)

returns 123.

380



Integrating With GoldMine

RANDOM(<range>)

SEQUENCE(<start>,
<inc>)

VAL(<string>)

Returns a random number.

<range> can be any number between 1 and 32,761. The returned random
number will range between zero and <range>, not including the range limit.
If not specified, the <range> parameter defaults to 32,761. You can
generate random numbers up to two billion with the expression
random(32761) * random(32761).

Return type: Numeric

Example

RANDOM(10)

Returns a number between 0-9.

Returns a sequence of consecutive numbers each time the expression is
evaluated. When the expression is first evaluated, the <start> parameter
starts the counter. Each subsequent evaluation of the function increments
the counter by the <inc> value. The SEQUENCE counter is local to the
operation, and its count is lost at the end of the operation.

Return type: Numeric

Example 1

SEQUENCE(1000,10)

returns 1010.

Example 2

SEQUENCE(1000,10)

SEQUENCE(1000,10)

returns 1020.

Converts <string> to a humeric value.
Return type: Numeric

Example

VAL("123.45")

returns 123.45.

381



Integrating With GoldMine

Miscellaneous Functions

RECCOUNT() Returns the number of records in Contactl. (May be time-consuming on
large SQL tables.)
Return type: Numeric
Example
RECCOUNT()
returns 35671

RECNO() Returns the current record number (Xbase) or ReclD (SQL) for the active
Contactl record.
Return type: Numeric
Example
RECNO()
returns 351.

RECNOCOUNT() Returns the current record number and total records. This function is not
available for SQL tables.
Return type: String
Example
RECNOCOUNT()
returns 236 of 2204.

TIME() Returns the current time.
Return type: Time
Example
TIME()
returns 14:56:22.

382



Xbase Database Structures

This chapter is provided for programmers who want to integrate their programs
with GoldMine Xbase format database structures.

Third-party developers are encouraged to integrate their products with GoldMine,
thereby enhancing both products. If you design a commercial program that works
with GoldMine, please contact FrontRange Solutions so we can include your
program in our Enhancement Guide.

This chapter describes the file organization and structures of GoldMine databases in
an Xbase format. Each database file is listed separately and includes its associated
index files, database structure, and special notes. For information about working
with GoldMine databases in an SQL format, see Chapter 7 on page 399. The
following pages describe the database structures of most GoldMine .DBF files. This
chapter does not include a discussion of every database. Security and system
database files are not included in this section. You should not interface with these
files. For an in-depth discussion on interfacing with GoldMine, visit the
Public.GoldMine.Programming newsgroup, which you can access directly from the
FrontRange Solutions Web site at http://www.frontrange.com.

Most GoldMine files are stored in the GOLDMINE\ GMBASE directory. These files
include most database and index files. The contact sets (CONT*.*) are stored in a
separate directory to allow GoldMine to handle multiple contact sets.

If you will be developing an application to read and write to the GoldMine databases,
we recommend that you use Dynamic Data Exchange (DDE) as described in “Dynamic

383


http://www.frontrange.com

Integrating With GoldMine

Data Exchange (DDE) on page 27 or the functions contained within GMXS32.DLL, as
described in “Using GMXS32.DLL for Database Access and Sync Log Updates” on page
91. If you choose to write directly to our files without using DDE, you must be aware of
the field/index structure and synchronization methodology used by GoldMine to
ensure full compatibility.

To view how GoldMine uses RECTYPEs for various purposes, create a contact set,
create sample contacts, and then create sample activities, and so on. Place obvious
values in each of the fields. Use a database viewing utility, such as BR4, MS-Access,
or Excel to view the sample records.

QEP Do not view your live contact database with an external application. Do not edit

GoldMine fields with an external application.

CAL.DBF

Directory: GMBASE

Description: Calendar file—contains a record for each scheduled activity. The different record
types are distinguished by the contents of the RECTYPE field. Different RECTYPES
may use each field for a different purpose.

Index File: CAL.MDX
CAL Indexes
Name Key
Cal Rectype+userlD+DTOS(onDate)+onTime
Calcont AccountNo+rectype+DTOS(onDate)+onTime
Caldate UserlD+DTOS(onDate)+onTime
Calprob Rectype-+userlD+Str(999-duration,3)
Calalarm AlarmFlag+userID+DTOS(ALARMDATE)+alarmTime
Calrlink lopRecID+RECTYPE+DTOS(ONDATE)+ONTIME
Calrecid recld

CAL Structure

Field Name Type Len Description

USERID String 8 User Name

ACCOUNTNO String 20 Account Number of linked contact
ONDATE Date 8 Activity date

ONTIME String 5 Activity Time

ENDDATE Date 8 Ending Date of Scheduled Activity
ALARMFLAG String 1 Alarm Flag

ALARMTIME String 5 Alarm Time

ALARMDATE Date 8 Alarm Date

384



Integrating With GoldMine

Field Name Type Len Description

ACTVCODE String 3 Activity Code

RSVP String 1 RSVP Notification

DURATION Integer 3 Duration/Probability

RECTYPE String 1 Record Type*

ACONFIRM String 3 Meeting Confirmation

APPTUSER String 10 Meeting Confirmation User

STATUS String 4 First character is flag, second char =1 if notes exist

DIRCODE String 10 DirCode of the current contact file

NUMBERL1 Integer 11 Sales Potential

NUMBER2 Integer 8 Units of a Forecasted Sale

COMPANY String 60 Company/Contact Name

REF String 80 Reference

NOTES Memo 1 Notes

LINKRECID String 15 Linked Record ID

IdoCrecid String 15 Reserved for future use

LOPRECID String 15 Linked Opportunity Manager Record ID

CREATEBY String 8 Created by User

CREATEON Date 8 Creation Date

CREATEAT String 6 Creation Time

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time

RECID String 15 Record ID
CONTACT1.DBF

Directory: COMMON

Description: Contact file—contains the main fields of contact records

Index File: CONTACT1.MDX

CONTACT1 Indexes

Name Key

The RECTYPE field contains the Calendar’s activity type. The following values are possible contents of RECTYPE:

A Appointment F Literature fulfillment S Sales potential
c Call Back M Message T Next action

D To-do o Other

E Event Q Queued e-mail

385



Integrating With GoldMine

Name Key

Contacc AccountNo

Contcomp Upper(company)+Substr(accountNo,10,4)

Contname Upper(contact)+Substr(accountNo,10,4)

Contzip Zip+Substr(accountNo,10,4)

Contcity Upper(city)+Substr(accountNo,10,4)

Contkeyl Upper(keyl)+Substr(accountNo,10,4)

Contkey2 Upper(key2)+Substr(accountNo,10,4)

Contkey3 Upper(key3)+Substr(accountNo,10,4)

Contkey4 Upper(key4)+Substr(accountNo,10,4)

Contkey5 Upper(key5)+Substr(accountNo,10,4)

Contlast Upper(lastName)+Substr(accountNo,10,4)
CONTSTAT | Upper(STATE+CITY)+SUBSTR(ACCOUNTNO,10,4)
CONTCNTY UPPER(COUNTRY+STATE)+SUBTR(ACCOUNTNO,10,4)
Contphon phonel+Substr(accountNo,10,4)

CnilRecid recid

CONTACT1 Relations

Related File->Field Contactl Field
Contact2->AccountNo Contactl->AccountNo
ContHist->AccountNo Contact1l->AccountNo

ContSupp->AccountNo Contactl->AccountNo

Cal->AccountNo

Contactl->AccountNo

CONTACT1 Structure

Field Name Type Len Description
ACCOUNTNO String 20 Account Number*
COMPANY String 40 Company Name
CONTACT String 40 Contact Name
LASTNAME String 15 Contact’s Last Name
DEPARTMENT String 35 Department

TITLE String 35 Contact Title

SECR String 20 Secretary

PHONE1 String 25 Phone 1

The ACCOUNTNO field contains the following information:

Positions
1-6

7-11
12-17
18-20

Value

Date in YYMMDD format

Seconds since midnight

Randomly generated

First three characters of the contact or company name

386




Integrating With GoldMine

Field Name Type Len Description

PHONE2 String 25 Phone 2

PHONE3 String 25 Phone 3

FAX String 25 Fax

EXT1 String 6 Phone Extension 1

EXT2 String 6 Phone Extension 2

EXT3 String 6 FAX_ Extensio_n used as EXT3 to maintain compatibility with
previous versions

EXT4 String 6 Phone Extension 3

ADDRESS1 String 40 Address 1

ADDRESS2 String 40 Address 2

ADDRESS3 String 40 Address 3

CITY String 30 City

STATE String 20 State

ZIP String 10 Zip Code

COUNTRY String 20 Country

DEAR String 20 Dear (Salutation)

SOURCE String 20 Source (Lead)

KEY1 String 20 Key 1

KEY2 String 20 Key 2

KEY3 String 20 Key 3

KEY4 String 20 Key 4

KEY5 String 20 Key 5

STATUS String 3 Internal Status**

NOTES Memo Notes

MERGECODES String 20 Merge Codes for primary contact

CREATEBY String 8 Creation User

CREATEON Date 8 Creation Date

CREATEAT String 5 Creation Time

OWNER String 8 Record Owner

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 6 Last Modified Time

RECID String 15 Record ID

*k

Position 1 of the Internal Status field keeps track of the type of phone number for the contact. If the first character is U, the phone numbers
are formatted for USA-style phone numbers: (999)999-9999.

Position 2 indicates the curtain level (0=none, 1=partial, 2=full)

Position 3 indicates a record alert is present if the value is 1.

387



Integrating With GoldMine

Directory:

Description:

Index File:

CONTACT2.DBF

COMMON

Contact file—contains the additional fields of contact records. Each complete
contact record has a record in this file. User-defined field data is stored in this file.

CONTACT2.MDX

CONTACTZ2 Index

Name Key
Contact2 accountNo
Cn2Recid recld

CONTACT2 Structure
Field Name Type Len Description
ACCOUNTNO String 20 Account Number
CALLBACKON | Date 8 Call Back Date
CALLBACKAT String 8 Call Back Time (unused compatibility field)
CALLBKFREQ [ Smallint 3 Call Back Frequency
LASTCONTON | Date 8 Last Contact Date
LASTCONTAT | String 8 Last Contact Time
LASTATMPON | Date 8 Last Attempt Date
LASTATMPAT String 8 Last Attempt Time
MEETDATEON | Date 8 Meeting Date
MEETTIMEAT String 8 Meeting Time
COMMENTS Date 65 Comments
PREVRESULT | String 65 Previous Results
NEXTACTION String 65 Next Action
ACTIONON Date 8 Next Action Date
CLOSEDATE Date 8 Expected Close Date
USERDEF01 String 10 User Defined 1
USERDEF02 String 10 User Defined 2
USERDEF03 String 10 User Defined 3
USERDEF04 String 10 User Defined 4
USERDEF05 String 10 User Defined 5
USERDEF06 String 10 User Defined 6
USERDEFQ7 String 10 User Defined 7
USERDEF08 String 10 User Defined 8
USERDEF09 String 10 User Defined 9
USERDEF10 String 10 User Defined 10

388




Integrating With GoldMine

Field Name Type Len Description

RECID String 15 Record ID

CONTGRPS.DBF

Directory: COMMON

Description: Groups file—the CONTGRPS file is used for both the group header, which defines
each group, and members for each group.

Index File: CONTGRPS.MDX
CONTGRPS Indexes
Name Key
GroupNo UPPER(userID+code)
GroupAcc accountno+userlD
GrpRecID recld
CONTGRPS Structure (header records)
Field Name Type Len Description
USERID String 15 Group user
CODE String 8 Group code
ACCOUNTNO | String 20 Header info*
REF String 24 Group reference
RECID String 15 Record ID/Group number
CONTGRPS Structure (member records)
Field Name Type Len Description
USERID String 15 Group number (from group header)
CODE String 8 Member sort value
ACCOUNTNO String 20 Linked contact accountno
REF String 24 Member reference
RECID String 15 Record ID

CONTHIST.DBF

Directory: COMMON

The ACCOUNTNO field contains the following information when the CONTGRPS record is a group header record:
Positions Value
1-8 M
15-20 Total members in group
The next available group number is stored in the CODE field in the first physical record in CONTGRPS.DBF.

389



Integrating With GoldMine

Description: Contact history file—contains a record for each completed activity
Index File: CONTHIST.MDX

CONTHIST Indexes
Name Key
ContHist accountNo+DTOS(onDate)+RECID
ContHusr USERID+SRECTYPE+DTOS(ONDATE)+RECID
CNHRLink lopRecld+DTOS(ONDATE)
CnHRecid recld

CONTHIST Structure
Field Name Type Len Description
USERID String 8 User
ACCOUNTNO String 20 Account No.
SRECTYPE String 1 First character of RecType
RECTYPE String 10 Record Type*
ONDATE Date 8 Action Date
ONTIME String 5 Action Time
ACTVCODE String 3 Activity Code
RESULTCODE String 3 Result Code
STATUS String 2 First character is flag, second character =1 if notes exist
DURATION String 8 Duration
UNITS String 8 Units of a Forecasted Sale
REF String 80 Reference
NOTES Memo 1 Notes
LINKRECID String 15 Linked Record ID
LOPRECID String 15 Linked Opp. Mgr. Record
CREATEBY String 8 Creation User
CREATEON Date 8 Creation Date
CREATEAT String 6 Creation Time
LASTUSER String 8 Last Modified By
LASTDATE Date 8 Last Modified Date
LASTTIME String 6 Last Modified Time

*

The RECTYPE field contains the completed activity's type. The following values are possible contents of RECTYPE:

A Appointment M Sent message Cl Incoming call

c Phone call 0 Other CM  Returned message
D To-do S Sale CO  Outgoing call

E Event T Next action MG  E-mail message

F Literature fulfillment U Unknown Mi Received e-mail

L Form CC  Callback MO  Sente-mail

390




Integrating With GoldMine

Field Name Type Len Description
RECID String 15 Record ID
CONTSUPP.DBF
Directory: COMMON
Description: Supplementary contact set—contains a record for each additional contact

record, referral and profile record. The different record types are distinguished
by the contents of the RECTYPE field. Different RECTYPES may use each field
for a different purpose.

Index File: CONTSUPP.MDX

CONTSUPP Indexes

Name Key
ContSupp accountNo+recType+UPPER(contact)
Contspfd UPPER(RECTYPE+CONTACT+CONTSUPREF)
Cnsrecid recld
CONTSUP Structure
Field Name Type Len Description
ACCOUNTNO String 20 Account No.
RECTYPE String 1 Record Type*
CONTACT String 30 Contact Name/Profile
TITLE String 35 Contact Title/Referral’'s Account Number
CONTSUPREF String 35 Reference
DEAR String 20 Dear (Salutation)
PHONE String 20 Phone
EXT String 6 Phone Extension
FAX String 20 FAX number
LINKACCT String 20 Linked Account
NOTES Memo 1 Notes
ADDRESS1 String 40 Additional Contact Address 1
ADDRESS2 String 40 Additional Contact Address 2
ADDRESS3 String 40 Additional Contact Address 3
* The RECTYPE field contains the record type. The following values are possible contents of RECTYPE:
C  Additional contact record 0  Organizational chart
E  Automated Process attached event P Profile record/extended profile record
H  Extended profile header R Referral record

L Linked document

The RECTYPE value H can be linked to records with the RECTYPE value P. Assigning extended information settings to a profile (assigned to
a tab, or extended fields used) creates an H record type to store the settings. The profile record stores a character string in the Phone field that matches
the H record’s ACCOUNTNO field.

391



Integrating With GoldMine

Field Name Type Len Description

CITY String 30 Additional Contact City

STATE String 20 Additional Contact State

ZIP String 10 Additional Contact Zip

COUNTRY String 20 Additional Contact Country

MERGECODES String 20 Merge Codes

STATUS String 4 First character is flag, second char =1 if notes exist

LINKEDDOC Memo | 10 Linked Document

LASTUSER String Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String Last Modified Time

RECID String 15 Record ID
INFOMINE.DBF

Directory: GMBASE

Description: InfoCenter file—stores all data for the InfoCenter

Index File: INFOMINE.MDX

INFOMINE Indexes

Name Key

infomine UPPER(rectype+LEFT(TSECTION,80)+LEFT(TOPIC,10)

infosort sortkey

infotran recType+reciD

infrecid recld

INFOMINE Structure

Field Name Type Len Description

ACCOUNTNO String 20 Account No.

CREATEBY String 8 Creation User

RECTYPE String 10 Record Type

SORTKEY String 20 Sort Key

TSECTION String 100 Section

TOPIC String 80 Topic

KEYWORDS String 80 Keywords

OPTIONS String 10 Options

OPTIONSL1 String 20 Options1

OPTIONS2 String 20 Options2

392




Integrating With GoldMine

Field Name Type Len Description
LINKEDDOC Memo |1 Linked Document
NOTES Memo 1 Notes
USERREAD String 8 Read Access
USERWRITE String 8 Write Access
LASTUSER String 8 Last Modified By
LASTDATE Date 8 Last Modified Date
LASTTIME String 5 Last Modified Time
RECID String 15 Record ID
LOOKUP.DBF
Directory: GMBASE
Description: Lookup file—contains a record of each defined look-up entry
Index File: LOOKUP.MDX

LOOKUP Indexes

Name Key
Lookup UPPER(FIELDName-+entry)
Ikurecid recld

LOOKUP Structure

Field Name Type Len Description
FIELDNAME String 11 Field Name
LOOKUPSUPP String 10 Lookup Options
ENTRY String 40 Description
RECID String 15 Record ID

393




Integrating With GoldMine

MAILBOX.DBF

Directory: GMBASE

Description:  E-mail Center mailbox file—stores all GoldMine e-mail

Index File: MAILBOX.MDX

MAILBOX Indexes
Name Key
mboxlink LinkRecld
mboxuser userld+folder+FOLDER2+DTOS(MAILDATE)
mbxrecid recld

MAILBOX Structure
Field Name Type Len Description
LINKRECID String 15 Linked Record ID
FLAGS String 8 Flags*
USERID String 8 User Name
FOLDER String 20 Folder**
FOLDER2 String 20 Subfolder
ACCOUNTNO String 20 Account No.
CREATEON Date 8 Creation Date
MAILSIZE String 8 Mail Size
MAILDATE Date Mail Date
MAILTIME String 8 Mail Time
MAILREF String 100 Reference
RFC822 Memo 1 Entire Mail Message
RECID String 15 Record ID

*

The FLAGS field is a String type, but actually stores a number. When the number is converted to binary, the following rules apply:

Bit On Off
1 Read Not Read
2 In History Not in History
3 Outbound Inbound
4 Attachments No Attachments
> The FOLDER field contains the name of the folder in which mail is stored. GoldMine uses the following predefined folders:
X-GM-INBOX -Inbox
X-GM-OUTBOX -Outbox
X-GM-TEMPLATES -Templates

394



Integrating With GoldMine

OPMGR.DBF

Directory: GMBASE

Description: Opportunity Manager file—stores all data maintained in the Opportunity Manager

Index File: OPMGR.MDX

OPMGR Indexes
Name Key
OpMgr UPPER(recType+userlD+stage)
Opld opld+recType
OPACCNO ACCOUNTNO+RECTYPE+OPID
OpRecID reclD

OPMGR Structure
Field Name Type Len Description
OPID String 15 Opportunity ID
RECTYPE String 3 Record Type*
ACCOUNTNO String 20 Account No.
USERID String 8 User Name
FLAGS String 10 Flags
COMPANY String 40 Company
CONTACT String 40 Contact
NAME String 50 Name
STATUS String 50 Status
CYCLE String 50 Cycle
STAGE String 30 Stage
SOURCE String 30 Source
F1 String 20
F2 String 20
F3 String 10
STARTDATE Date 8 Start Date
CLOSEDDATE Date 8 Close Date
CLOSEBY Date 8 Close by
FORAMT Float 10 For Amount

*

The following OpMgr rectypes are valid, where x represents O for opportunity records, or P for project records:

0 Opportunity header record xT  Team member
P Project header record Xl Issue
xC  Contact xF Field
xP Competitor xK  Task

395




Integrating With GoldMine

Field Name Type Len Description
FORPROB Integer 4 Probability
CLOSEAMT Float 10 Close Amount
Notes Memo 1 Notes

RECID String 15 Record ID

PERPHONE.DBF

Directory: GMBASE
Description: Personal Rolodex file—contains a record of each entry in the user’s Rolodex
Index File: PERPHONE.MDX

PERPHONE Indexes

Name Key
Perphone UPPER(recType+useriD+contact)
pphrecid recld

PERPHONE Structure
Field Name Type Len Description
RECTYPE String 1 Record Type
USERID String 8 User Name
STATUS String 2 Status
CONTACT String 30 Contact Name
PHONE1 String 16 Phone Number
RECID String 15 Record ID

RESITEMS.DBF

Directory: GMBASE

Description: Resources file—stores data regarding equipment, facilities, and other resources
that you can schedule from the Resources’ Master File.

Index File: RESITEMS.MDX

RESITEMS Indexes

Name Key
resource name
rscrecid recid

RESITEMS Structure

Field Name Type | Len | Description

396



Integrating With GoldMine

Field Name Type Len Description
NAME String 8 Name
CODE String 10 Code
RESDESC String 40 Description
CUSTODIAN | String 8 Custodian
NOTES Memo 1 Notes
RECID String 15 Record ID
SPFILES.DBF
Directory: GMBASE
Description: Contact files directory—contains a record for each GoldMine
contact set

Index File: SPFILES.MDX

SPFILES Index
Name Key
Spfiles UPPER(dirPath)
Sflcode dirCode
sflrecid recld

SPFILES Structure
Field Name Type Len Description
DIRNAME String 35 Contact file description
DIRPATH String 100 Contact file path
USERID String 8 Contact file user
DIRCODE String 10 Contact Set Code
DBPASSWORD String 36 Database Password
DRIVER String 25 Database Driver
RECID String 15 Record ID

397







SQL Database Structures

Third-party developers are encouraged to integrate their products with GoldMine,
thereby enhancing both products. If you design a commercial program that works
with GoldMine, please contact FrontRange Solutions so we can include your
program in our Enhancement Guide.

This chapter describes the file organization and structures of Goldmine SQL format
databases in an SQL format. Each database file is listed separately and includes its
associated index files, database structure, and special notes. For information about
working with the GoldMine Xbase format database, see Chapter 6 on page 383. The
following pages describe the database structures of most GoldMine .DBF files. This
chapter does not include a discussion of every database. Security and system
database files are not included in this section. You should not interface with these
files. For an in-depth discussion on interfacing with GoldMine, visit the
Public.GoldMine.Programming newsgroup, which you can access directly from the
FrontRange Solutions Web site at www.frontrange.com.

If you will be developing an application to read and write to the GoldMine databases,
we recommend that you use Dynamic Data Exchange (DDE) as described in “Dynamic
Data Exchange (DDE) on page 27 or the functions contained within GMXS32.DLL, as
described in “Using GMXS32.DLL for Database Access and Sync Log Updates” on page
91. If you choose to write directly to our files without using DDE, you must be aware of
the field/index structure and synchronization methodology used by GoldMine to
ensure full compatibility.

399


http://www.frontrange.com

Integrating With GoldMine

To view how GoldMine uses RECTYPEs for various purposes, create a contact set,
create sample contacts, and then create sample activities, and so on. Place obvious
values in each of the fields. Use a database viewing utility, such as MS-Access,
MSSQL Enterprise Manager, or isql to view the sample records.

l:‘ Do not view your live contact database with an external application. Do not edit
GoldMine fields with an external application.

CAL Table
Description: Calendar file—contains a record for each scheduled activity. The different record
types are distinguished by the contents of the RECTYPE field. Different
RECTYPEs may use each field for a different purpose.
CAL Indexes
Name Index Tags Unique?
CALCONT ACCOUNTNO+RECTYPE+ONDATE+ONTIME+RECID | No
CAL RECTYPE+USERID+ONDATE+ONTIME+RECID No
CALDATE USERID+ONDATE+ONTIME+RECID No
CALPROB RECTYPE+USERID No
CALALARM ALARMFLAG+USERID+ALARMDATE+ALARMTIME No
CALRLINK LOPRECID+RECTYPE+ONDATE+ONTIME No
CALRECID RECID Yes
CAL Structure
Field Name Type Len Description
USERID String 8 User Name
ACCOUNTNO String 20 Account Number of linked contact
ONDATE Date 8 Activity date
ONTIME String 5 Activity Time
ENDDATE Date 8 Ending Date of Scheduled Activity
ALARMFLAG String 1 Alarm Flag
ALARMTIME String 5 Alarm Time
ALARMDATE Date 8 Alarm Date
ACTVCODE String 3 Activity Code
RSVP String 1 RSVP Noatification

400



Integrating With GoldMine

Field Name Type Len Description

DURATION Integer 3 Duration/Probability

RECTYPE String Record Type*

ACONFIRM String 3 Meeting Confirmation
APPTUSER String 10 Meeting Confirmation User
STATUS String 4 First character is flag, second char =1 if notes exist
DIRCODE String 10 DirCode of the current contact file
NUMBERL1 Integer 11 Sales Potential

NUMBER2 Integer 8 Units of a Forecasted Sale
COMPANY String 60 Company/Contact Name

REF String 80 Reference

NOTES Memo 1 Notes

LINKRECID String 15 Linked Record ID

IdoCrecid String 15 Reserved for future use
LOPRECID String 15 Linked Opportunity Manager Record ID
CREATEBY String 8 Created by User

CREATEON Date 8 Creation Date

CREATEAT String 6 Creation Time

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time

RECID String 15 Record ID

CONTACT1 Table

Description:

Contact file—contains the main fields of contact records

CONTACT1 Indexes

Name Index Tags Unique?
CONTACC ACCOUNTNO No
CONTCNTY U_COUNTRY+U_STATE+ACCOUNTNO No
CONTCOMP U_COMPANY+ACCOUNTNO No
* The RECTYPE field contains the calendar’s activity type. The following values are possible
contents of RECTYPE:
A Appointment F Literature fulfillment S Sales potential
C Call Back M Message T Next action
D To-do o Other
E Event Q Queued e-mail

401




Integrating With GoldMine

Name Index Tags Unique?
CONTNAME U_CONTACT+ACCOUNTNO No
CONTZIP ZIP+ACCOUNTNO No
CONTCITY U_CITY+ACCOUNTNO No
CONTKEY1 U_KEY1+ACCOUNTNO No
CONTKEY2 U_KEY2+ACCOUNTNO No
CONTKEY3 U_KEY3+ACCOUNTNO No
CONTKEY4 U_KEY4+ACCOUNTNO No
CONTKEY5 U_KEY5+ACCOUNTNO No
CONTLAST U_LASTNAME+ACCOUNTNO No
CONTSTAT U_STATE+U_CITY+ACCOUNTNO No
CONTPHON PHONE1+ACCOUNTNO No
CN1RECID RECID Yes

CONTACT1 Relations

Related File->Field

Contactl Field

Contact2->AccountNo

Contactl->AccountNo

ContHist->AccountNo

Contactl->AccountNo

ContSupp->AccountNo

Contactl->AccountNo

Cal->AccountNo

Contactl->AccountNo

CONTACT1 Structure

Field Name Type Len Description
ACCOUNTNO String 20 Account Number*
COMPANY String 40 Company Name
CONTACT String 40 Contact Name
LASTNAME String 15 Contact’s Last Name
DEPARTMENT String 35 Department
TITLE String 35 Contact Title
SECR String 20 Secretary
PHONE1 String 25 Phone 1
PHONE2 String 25 Phone 2
PHONE3 String 25 Phone 3

FAX String 25 Fax

The ACCOUNTNO field contains the following information:

Positions Value
1-6
7-11
12-17
18-20

Date in YYMMDD format
Seconds since midnight
Randomly generated
First three characters of the contact or company name




Integrating With GoldMine

Field Name Type Len Description

EXT1 String Phone Extension 1

EXT2 String Phone Extension 2

EXT3 String 6 FAX Extension used as EXT3 to maintain
compatibility with previous versions

EXT4 String 6 Phone Extension 3

ADDRESS1 String 40 Address 1

ADDRESS?2 String 40 Address 2

ADDRESS3 String 40 Address 3

CITYy String 30 City

STATE String 20 State

ZIP String 10 Zip Code

COUNTRY String 20 Country

DEAR String 20 Dear (Salutation)

SOURCE String 20 Source (Lead)

KEY1 String 20 Key 1

KEY2 String 20 Key 2

KEY3 String 20 Key 3

KEY4 String 20 Key 4

KEY5 String 20 Key 5

STATUS String 3 Internal Status**

NOTES Memo Notes

MERGECODES String 20 Merge Codes for primary contact

CREATEBY String 8 Creation User

CREATEON Date 8 Creation Date

CREATEAT String 5 Creation Time

OWNER String 8 Record Owner

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 6 Last Modified Time

U_COMPANY String 40 Upper-case shadow of Company field

U_CONTACT String 40 Upper-case shadow of Contact field

U_LASTNAME String 15 Upper-case shadow of contact’s Last Name field

U CITY String 30 Upper-case shadow of City field

*k

Position 1 of the Internal Status field keeps track of the type of phone number for the contact. If the first character is U, the phone numbers
are formatted for USA-style phone numbers: (999)999-9999.

Position 2 indicates the curtain level (0=none, 1=partial, 2=full).
Position 3 indicates a record alert is present if the value is 1.

403




Integrating With GoldMine

Field Name Type Len Description

U _STATE String 20 Upper-case shadow of State field

U _COUNTRY String 20 Upper-case shadow of Country field
U KEY1 String 20 Upper-case shadow of Key 1 field
U KEY2 String 20 Upper-case shadow of Key 2 field

U KEY3 String 20 Upper-case shadow of Key 3 field

U _KEY4 String 20 Upper-case shadow of Key 4 field

U _KEY5 String 20 Upper-case shadow of Key 5 field
RECID String 15 Record ID

CONTACT2 Table

Description: Contact file—contains the additional fields of contact records. Each complete
contact record has a record in this file. User-defined field data is stored in this file.

CONTACTZ2 Index

Name Index Tags Unique?
CONTACT2 ACCOUNTNO No
CN2RECID RECID Yes

CONTACT2 Structure
Field Name Type Len Description
ACCOUNTNO String 20 Account Number
CALLBACKON Date 8 Call Back Date
CALLBACKAT String 8 Call Back Time (unused compatibility field)
CALLBKFREQ Smallint | 3 Call Back Frequency
LASTCONTON Date 8 Last Contact Date
LASTCONTAT String 8 Last Contact Time
LASTATMPON Date 8 Last Attempt Date
LASTATMPAT String 8 Last Attempt Time
MEETDATEON Date 8 Meeting Date
MEETTIMEAT String 8 Meeting Time
COMMENTS Date 65 Comments
PREVRESULT String 65 Previous Results
NEXTACTION String 65 Next Action
ACTIONON Date 8 Next Action Date
CLOSEDATE Date 8 Expected Close Date
USERDEF01 String 10 User Defined 1
USERDEF02 String 10 User Defined 2

404



Integrating With GoldMine

Field Name Type Len Description
USERDEF03 String 10 User Defined 3
USERDEF04 String 10 User Defined 4
USERDEF05 String 10 User Defined 5
USERDEF06 String 10 User Defined 6
USERDEFO07 String 10 User Defined 7
USERDEF08 String 10 User Defined 8
USERDEF09 String 10 User Defined 9
USERDEF10 String 10 User Defined 10
RECID String 15 Record ID

CONTGRPS Table

Groups file—the CONTGRPS file is used for both the group header, which

Description:

defines each group, and members for each group.

CONTGRPS Indexes

Name Index Tags Unique?
GROUPNO USERID+U_CODE+RECID No
GROUPACC ACCOUNTNO+USERID No
GRPRECID RECID Yes

CONTGRPS Structure (header records)

Field Name Type Len Description

USERID String 15 Group user

CODE String 8 Group code

ACCOUNTNO String 20 Header info*

REF String 24 Group reference

U_CODE String 8 Upper-case shadow of member sort value

RECID String 15 Record ID/Group number
CONTGRPS Structure (member records)

Field Name Type Len Description

USERID String 15 Group number (from group header)

CODE String 8 Member sort value

ACCOUNTNO String 20 Linked contact accountno

The ACCOUNTNO field contains the following information when the CONTGRPS record is a group header record:

Positions Value
1-8 M
15-20 Total members in group

The next available group number is stored in the CODE field in the first physical record in CONTGRPS.DBF.

405




Integrating With GoldMine

Field Name Type Len Description

REF String 24 Member reference

U_CODE String 8 Upper-case shadow of member sort value
RECID String 15 Record ID

CONTHIST Table

Description:

CONTHIST Indexes

Contact history file—contains a record for each completed activity

Name Index Tags Unique?

CONTHIST ACCOUNTNO+ONDATE+RECID No

CONTHUSR USERID+SRECTYPE+ONDATE+RECID No

CNHRLINK LOPRECID+ONDATE No

CNHRECID RECID Yes
CONTHIST Structure

Field Name Type Len Description

USERID String 8 User

ACCOUNTNO String 20 Account No.

SRECTYPE String 1 First character of RecType

RECTYPE String 10 Record Type*

ONDATE Date 8 Action Date

ONTIME String 5 Action Time

ACTVCODE String 3 Activity Code

RESULTCODE String 3 Result Code

STATUS String 2 First character is flag, second character =1 if notes exist

DURATION String 8 Duration

UNITS String 8 Units of a Forecasted Sale

REF String 80 Reference

Field Name Type Len Description

NOTES Memo 1 Notes

LINKRECID String 15 Linked Record ID

LOPRECID String 15 Linked Opp. Mgr. Record

*

To-do
Event

rFrTmTmoo>»

Form

Appointment
Phone call

Literature fulfillment

oc-Hwnwo=

The RECTYPE field contains the completed activity's type. The following values are possible contents of RECTYPE:

Sent message Cl Incoming call
Other CM  Returned message
Sale CO  Outgoing call

Next action MG  E-mail message
Unknown M Received e-mail
Call back MO  Sente-mail

406




Integrating With GoldMine

Field Name Type Len Description
CREATEBY String 8 Creation User
CREATEON Date 8 Creation Date
CREATEAT String 6 Creation Time
LASTUSER String 8 Last Modified By
LASTDATE Date 8 Last Modified Date
LASTTIME String 6 Last Modified Time
RECID String 15 Record ID

CONTSUPP Table

Description: Supplementary contact set—contains a record for each additional contact record,
referral and profile record. The different record types are distinguished by the
contents of the RECTYPE field. Different RECTYPEs may use each field for a

different purpose.

CONTSUPP Indexes

Name Index Tags Unique?
CONTSUPP | ACCOUNTNO+RECTYPE+U_CONTACT+RECID No
CONTSPFD RECTYPE+U_CONTACT+U_CONTSUPREF No
CNSRECID RECID Yes
CONTSUPP Structure
Field Name Type Len Description
ACCOUNTNO String 20 Account No.
RECTYPE String 1 Record Type*
CONTACT String 30 Contact Name/Profile
TITLE String 35 Contact Title/Referral's Account Number
CONTSUPREF String 35 Reference
DEAR String 20 Dear (Salutation)
PHONE String 20 Phone
EXT String 6 Phone Extension
FAX String 20 FAX number
LINKACCT String 20 Linked Account
* The RECTYPE field contains the record type. The following values are possible contents of RECTYPE:
C  Additional contact record 0  Organizational chart
E  Automated Process attached event P Profile record/extended profile record
H  Extended profile header R Referral record

L Linked document

The RECTYPE value H can be linked to records with the RECTYPE value P. Assigning extended information settings to a profile (assigned to
a tab or extended fields used) creates an H record type to store the settings. The profile record stores a character string in the Phone field that matches
the H record’s ACCOUNTNO field.

407



Integrating With GoldMine

Field Name Type Len Description
NOTES Memo 1 Notes
ADDRESS1 String 40 Additional Contact Address 1
ADDRESS?2 String 40 Additional Contact Address 2
ADDRESS3 String 40 Additional Contact Address 3
CITY String 30 Additional Contact City
STATE String 20 Additional Contact State
ZIP String 10 Additional Contact Zip
COUNTRY String 20 Additional Contact Country
MERGECODES String 20 Merge Codes
STATUS String 4 First character is flag, second char =1 if notes exist
LINKEDDOC Memo | 10 Linked Document
LASTUSER String 8 Last Modified By
LASTDATE Date Last Modified Date
LASTTIME String 5 Last Modified Time
U_CONTACT String 30 Upper-case shadow of Contact field
U_CONTSUPREF String 35 Upper-case shadow of Reference field
RECID String 15 Record ID
INFOMINE Table
Description: InfoCenter file—stores all data for the InfoCenter
INFOMINE Indexes
Name Index Tags Unique?
INFOMINE RECTYPE+U_TSECTION+U_TOPIC | No
INFOSORT SORTKEY No
INFOTRAN RECTYPE+RECID No
INFRECID RECID Yes
INFOMINE Structure
Field Name Type Len Description
ACCOUNTNO String 20 Account No.
CREATEBY String 8 Creation User
RECTYPE String 10 Record Type
SORTKEY String 20 Sort Key
TSECTION String 100 Section
TOPIC String 80 Topic
KEYWORDS String 80 Keywords

408




Integrating With GoldMine

Field Name Type Len Description

OPTIONS String 10 Options

OPTIONS1 String 20 Options1

OPTIONS2 String 20 Options2

LINKEDDOC Memo 1 Linked Document

NOTES Memo 1 Notes

USERREAD String 8 Read Access

USERWRITE String 8 Write Access

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time
U_TSECTION String 100 Upper-case shadow of Section field
U_TOPIC String 80 Upper-case shadow of Topic field
RECID String 15 Record ID

Description:

LOOKUP Indexes

LOOKUP Table

Lookup file—contains a record of each defined look-up entry

Name Index Tags Unique?
LOOKUP FIELDNAME+U_ENTRY No
LKURECID RECID Yes
LOOKUP Structure
Field Name Type Len Description
FIELDNAME String 11 Field Name
LOOKUPSUPP String 10 Lookup Options
ENTRY String 40 Description
U _ENTRY String 40 Upper-case shadow of Description field
RECID String 15 Record ID

Description:

MAILBOX Indexes

MAILBOX Table

E-mail Center mailbox file—stores all GoldMine e-mail

Name Index Tags Unique?
MBOXLINK LINKRECID No
MBOXUSER USERID+FOLDER+FOLDER2+MAILDATE No

409




Integrating With GoldMine

Name Index Tags Unique?
MBXRECID RECID Yes
MAILBOX Structure

Field Name Type Len Description

LINKRECID String 15 Linked Record ID

FLAGS String 8 Flags*

USERID String 8 User Name

FOLDER String 20 Folder**

FOLDER2 String 20 Subfolder

ACCOUNTNO String 20 Account No.

CREATEON Date 8 Creation Date

MAILSIZE String 8 Mail Size

MAILDATE Date Mail Date

MAILTIME String 8 Mail Time

MAILREF String 100 Reference

RFC822 Memo 1 Entire Mail Message

RECID String 15 Record ID
OPMGR Table

Description: Opportunity Manager file—stores all data maintained in the Opportunity Manager

OPMGR Indexes

Name Index Tags Unique?
OPMGR RECTYPE+USERID+U_STAGE No

OPID OPID+RECTYPE No
OPACCNO ACCOUNTNO+RECTYPE+OPID No
OPRECID RECID Yes

OPMGR Structure

Field Name Type Len Description
OPID String 15 Opportunity ID
RECTYPE String 3 Record Type*

The FLAGS field is a String type, but actually stores a number. When the number is converted to binary, the following rules apply:

Bit On Off
1 Read Not Read
2 In History Not in History
3 Outbound Inbound
4 Attachments No Attachments

*k

The FOLDER field contains the name of the folder in which mail is stored. GoldMine uses the following predefined folders:

X-GM-INBOX -Inbox
X-GM-OUTBOX -Outbox
X-GM-TEMPLATES -Templates

The following OpMgr rectypes are valid, where x represents O for opportunity records, or P for project records:

410



Integrating With GoldMine

Field Name Type Len Description
ACCOUNTNO String 20 Account No.
USERID String 8 User Name
FLAGS String 10 Flags
COMPANY String 40 Company
CONTACT String 40 Contact
NAME String 50 Name
STATUS String 50 Status
CYCLE String 50 Cycle
STAGE String 30 Stage
SOURCE String 30 Source

F1 String 20

F2 String 20

F3 String 10

STARTDATE Date Start Date
CLOSEDDATE Date 8 Close Date
CLOSEBY Date Close by
FORAMT Float 10 For Amount
FORPROB Integer 4 Probability
CLOSEAMT Float 10 Close Amount
Notes Memo 1 Notes

U _STAGE String 30 Upper-case shadow of Stage field
RECID String 15 Record ID

PERPHONE Table

Description:

Personal Rolodex file—contains a record of each entry in the user’'s Rolodex

PERPHONE Indexes

Name Index Tags Unique?
PERPHONE RECTYPE+USERID+U_CONTACT No
PPHRECID RECID Yes

PERPHONE Structure

Field Name

| Type | Len

| Description

0 Opportunity header record

P Project header record
xC  Contact
xP Competitor

xT
X

xF
xK

Team member

Issue
Field
Task

411




Integrating With GoldMine

Field Name Type Len Description

RECTYPE String Record Type

USERID String User Name

STATUS String Status

CONTACT String 30 Contact Name

PHONE1 String 16 Phone Number

U_CONTACT String 30 Upper-case shadow of Contact field
RECID String 15 Record ID

RESITEMS Table

Description:

Resources file—stores data regarding equipment, facilities, and other resources

that you can schedule from the Resources’ Master File.

RESITEMS Indexes

Name Index Tags Unique?
RESITEMS NAME No
RSRECID RECID Yes
RESITEMS Structure
Field Name Type Len Description
NAME String 8 Name
CODE String 10 Code
RESDESC String 40 Description
CUSTODIAN String 8 Custodian
NOTES Memo 1 Notes
RECID String 15 Record ID

SPFILES Table

Description:

SPFILES Index

Contact files directory—contains a record for each GoldMine contact set

Name Index Tags Unique?

SFLCODE DIRCODE No

SFLRECID RECID Yes

SPFILES U_DIRPATH No
SPFILES Structure

Field Name Type Len Description

DIRNAME String 35 Contact file description

412




Integrating With GoldMine

Field Name Type Len Description

DIRPATH String 100 Contact file path

USERID String 8 Contact file user

DIRCODE String 10 Contact Set Code

DBPASSWORD String 36 Database Password

DRIVER String 25 Database Driver

U_DIRPATH String 100 Upper-case shadow of Contact file path
RECID String 15 Record ID

413







Appendix:
Code Examples

This appendix contains code examples for the GMXS32.DLL and GMXMLAPILDLL
in the following programming languages:

o C++
e Visual Basic

e Delphi

GMXS32.DLL Code Examples

This section shows sample codes for C++, Visual Basic, and Delphi.

C++ Examples
The following C++ files have been provided as part of this package:
GM5S32.H: C Header file containing all of the GMXS32.DLL function prototypes.

Function prototypes

TEEEEEEEErr i rrrrrrrrrird
/1

415



Integrating With GoldMine

/1 gnbs32. h
/1 Purpose : GwbS32.DLL interface

#i fndef __ GWBS32_H
#define _ GwWS32_H
#i fdef __cplusplus
extern "C' {
#endi f

/1 licensing structure passed to GWV Get Li censel nfo
t ypedef struct

{

char szLicensee[60]; /1 licensee nane

char szLi cNo[ 20]; /1 master serial nunber

char szSiteNange[ 20]; /1 undocked site nane

long ilLicUsers; /!l licensed users

long iSQUsers; /1 licensed SQ. users

long iGSSites; /1 license GoldSync sites

Il ong isDeno; /! is denp install

long isServerlic; /1l is primary license ("D or 'E)

long isRenotelic; /!l is renote license ("U or 'S)

Il ong isUSALi cense; /1 is USA license (1=US, 128/ 32
/1 bit, 0=nonUS, 32-bit only)

long iDLLVersion; /1 the DLL version (400822)

long i Reservedl;
long i Reserved2;
long szReserved[ 100];

} GWV Li cl nf o;

// DLL initialization functions
int _stdcall GWV LoadBDE( char *szSysDir, char *szGoldDir, char
*szComonDir, char *szUser =0, char *szPass =0 );
int _stdcall GW Unl oadBDE();

int _stdcall GWV Set SQLUser Pass( char *szUser Name, char *szPassword );
int _stdcall GWV GetlLicenselnfo( GW.Liclnfo *pLic );

long _stdcall GWVIsUser GroupMenber( char *szG oup, char *szUserlD );
/| DataStream functions

/1 DBF workarea functions
long _stdcall GWVDB Open( char *szTabl eNane );

long _stdcall GWVDB C ose( |ong pArea );
long _stdcall GWVDB Append( |ong pArea, char* szReclD );

long _stdcall GWV DB Replace( |long pArea, char* szField, char *szData,
i AddTo );

long _stdcall GWV DB Delete( |ong pArea );

i nt

416



Integrating With GoldMine

long _stdcall GWVDB Unl ock( |ong pArea );

long _stdcall GWV DB Read( |ong pArea, char *szField, char *szBuf, int
i Buf Si ze );

long _stdcall GWYDB Top ( |ong pArea );

long _stdcall GWVDB Bottom( |ong pArea );

long _stdcall GWV DB SetOrder( |ong pArea, char *szTag );

long _stdcall GWVDB Seek( |ong pArea, char* szParam);

long _stdcall GWVDB Skip( long pArea, int nSkip =1 );

long _stdcall GWV DB Goto( |ong pArea, char *szRecNo );

long _stdcall GWV DB Myve( |ong pArea, char *szConmand, char* szParam);
long _stdcall GWVDB Search( |ong pArea, char *szExpr, char *szReclD);
long _stdcall GWVDB Filter( |ong pArea, char *szFilterExpr );

long _stdcall GWV DB Range( |ong pArea, char *szMn, char* szMax, char*
szTag );

long _stdcall GWV DB RecNo( |ong pArea, char *szReclD);
long _stdcall GWVDB |IsSQ.( |ong pArea );

/1l Quick one-field access functions
/1 (these are slow -- do not use in |oops)
long _stdcall GWVDB Qui ckSeek( char *szTabl eName, char *szlndex, char
*szSeekVal ue, char *szReclD );

long _stdcall GWVDB Qui ckRead( char *szTabl eNane, char *szRecl D, char
*szField, char *szValue, int ilLen );

long _stdcall GWVDB_Qui ckRepl ace( char *szTabl eName, char *szRecl D, char
*szField, char *szValue, int i AddTo =0 );

/1 Sync functions
int _stdcall GWN SyncStanp( char *szStanp, char *szCQutBuf );

int _stdcall GWV UpdateSyncLog( char *szTable, char *szRecl D,
char *szField, char *szAction );

int _stdcall GWV Readl npTLog( char *szFile, int bDel WhenDone, char
*szStatus );

char* _stdcall GWN NewRecl D( char *pBuff, char *pUser );

417



Integrating With GoldMine

/1 msc functions
long _stdcall GWV UserAccess( long i Option );

struct Gwwv;
t ypedef GWWiv * HGV\V;

/1 QGwbS32. DLL business | ogic functions
long _stdcall GWV Execute( const char *szFunc, HGWNV hgmv );

/1 create, release & copy name val ue containers
HGWV __stdcall GWV.NV_Create();

HGWV __stdcal |l GWN NV_Creat eCopy( HGWV hgmv) ;
void __stdcall GWVNV_Del et e( HGWV hgmmv) ;
void __stdcall GWVNV_Copy(HGWV hgmvDestination , HGWV hgmvSource);

/1 get and set val ue by name
const char* stdcall GWV NV_Get Val ue(HGWV hgmv, const char* nane,

const char* defaultVal ue);
void __stdcall GWVNV_Set Val ue(HGWV hgmv, const char* nane, const
char* val ue);

/'l Check if name exists. returns: O failed, 1 success
long __stdcall GWN NV_NaneExi st s(HGWV hgmv, const char* nane);

/1 remove nane(s)
void __stdcall GWVNV_EraseNane( HGWV hgmmv, const char* nane);

void __stdcall GWVNV_EraseAl | (HGWV hgmv) ;

/1 iterate over nane-value list (1 based)
long _ _stdcall GWW.NV_Count (HGWV hgmmv) ;

const char* __stdcall GWV.NV_Get NaneFr om ndex( HGWV hgmmv, |ong i ndex);
const char* __stdcall GWV.NV_Get Val ueFrom ndex( HGWV hgmv, | ong i ndex);

void __stdcall GWVNV_Set Str(HGWV hgmmv, char dl mNanme, char dl nval, const
char* pszStr);

#i fdef __cplusplus
/* close extern "C" { */

}
#endi f

#endif // __GWwS32_H

418



Integrating With GoldMine

Logging In

The following example uses C++ to access the GM5S32.DLL functions The DLL is
dynamically loaded and its function addresses are retrieved using the
GetProcAddress API.

/'l prototypes

typedef int (*fnGWV LoadBDE) ( char *szSysDir, char *szGoldDir, char
*szConmonDi r, char *szUser );

typedef int (*fnGWV Unl oadBDE) ();

void GWbS32_DLL_Test ()

/1l load the GwS32. DLL
HMODULE hLi b = LoadLi brary("GvwS32. DLL");
if( hLib)

/1 get proc addresses of GWbS32 functions
f nGWV LoadBDE GWW LoadBDE = (f nGWV LoadBDE) Get ProcAddr ess(

(HI NSTANCE) hLi b, " GMW LoadBDE") ;

f NnGWV_Unl oadBDE GWW _Unl oadBDE = (f nGWW_Unl oadBDE)
Get ProcAddr ess( ( HE NSTANCE) hLi b, " GWN Unl oadBDE") ;

/] initialize the API
GMV LoadBDE( "d:\\gmt", "d:\\gm4", "d:\\gmi\\demo", szlker, szPass );
/] do whatever..............
/] shut down API
GWV_Unl oadBDE() ;

/1 unload the DLL
FreeLi brary(hLi b);

return;

}

Creating a Contact with Business Logic/
Enumerating a Name Value Container/DataStream

The following DataStream example assumes that GM5S32.DLL has already been
loaded and the function addresses have been retrieved. The first example retrieves a
relatively small number of records into a fixed-size packet buffer, while the second
example retries a large number of records using 100-record packet buffers.

voi d DataStreanDLL_Exanpl e()

{

long i Handl e = 0;

long i K = 0;

/1 Exanmple 1:

/1l Get a small nunber of records and use a fixed size buffer
/1

/1 return all contact names at Front Range Sol utions

/1

char *szSQ.1 = "SELECT Contact FROM Contactl "
"WHERE U_COWVPANY LI KE ' FRONTRANGE SOLUTI ONS%
"ORDER BY U_CONTACT";

/1 send DataStream SQL Query

if( (iHandle = GWVDS_Query( szSQ.1 )) > 0)

419



Integrating With GoldMine

/1 allocate buffer for 200 contacts at 40 chars per/nane
| ong i Buf Size = 200*40 +20;

char *szBuf = new char[i Buf Si ze] ;

/] fetch first 200 records into buffer
i OK = GWV DS Fetch( iHandle, szBuf, iBufSize, 200 );

/1 do whatever with the data
ODS( szBuf );

/1l make sure to delete the buffer
delete [] szBuf; szBuf = NULL;

/'l close the query
iOK = GWVDS dose( iHandle ); iHandle = 0;
}

/1 Exanmple 2:

/1l Get a large nunmber of records in 100-record buffers
/1

/1 return all serial nunbers beginning with "123...."
/1

char *szSQL2 = "SELECT Cont SupRef, Addressl, AccountNo FROM Cont Supp "
"WHERE RECTYPE = 'P' AND U _CONTACT = ' SERI AL NUMBER
"AND U_Cont SupRef Like '123%

"ORDER BY U_Cont SupRef";

/1 send DataStream SQL Query

if( (iHandle = GWNV DS _Query( szSQ2 )) > 0)

char *szBuf = NULL;

| ong i Buf Size = -1;

/1 read while the first character of result is O
while( (szBuf == NULL || szBuf[0] == "'0") && iBufSize)

/1 fetch 100 records and get the buffer size needed
/1 (set the szBuf and iBufSize paraneters to 0 to

/1 fetch the data and retrieve the buffer size needed)
if( iBufSize = GWVDS Fetch( iHandle, 0, 0, 100 ) )

{

/1 delete old buffer and all ocate new buffer

delete [] szBuf; szBuf = NULL;

szBuf = new char[i Buf Si ze] ;

/1 read the data (nGetRecs is 0 since data is already read)
i K = GWV DS Fetch( iHandle, szBuf, iBufSize, 0);

/] do whatever with the data

ODS( szBuf );

/1 make sure to delete the buffer

delete [] szBuf; szBuf = NULL;

/1 close the query

iOK = GWDS Cdose( iHandle ); iHandle = 0;
}

return;

}

420



Integrating With GoldMine

Low-Level Work Area

The following example assumes that GM5S32.DLL has already been loaded and the

function addresses have been retrieved. The example opens up the Contactl and
ContSupp tables to find a particular contact’s phone number and primary e-mail

address.

/1
voi d DB_FuncsDLL_Exanpl e()
{
long iOK = 0;
int iBufSize = 100;
char szBuf[100], szBuf?2[100], szAccNo[20+1];

I
/1 Exanpl el:
/1 Find a Jon's phone nunber and prinmary e-nail address
I

char *szNane = "JON V. FERRARA";
/1 open contactl and contsupp
long iCl = GWW DB Open( "Contactl" );
long i CS = GWV DB _Open( " Cont Supp" );

/1 tables opened ok?
if( iCl & iCS)

{

/! set the Contactl index to Cont Name
iOK = GWW DB _Set Order( i Cl, "ContNane" );

// seek Jon's name
/1

if( GWWDB Seek( iCl, szName ) == 1) // seek exact

{

/1 read Jon's phone nunber
i OK = GWV DB Read( iCl, "Phonel", szBuf, iBufSize );
ODS( szBuf ); // show phone
/! read Jon's Account No
i OK = GWV DB _Read( iCl, "AccountNo", szAccNo, 20+1 );

/1 set range to all contact's e-mail records

wsprintf( szBuf, "9%PE-MAIL ADDRESS', szAccNo );

i OK = GWV DB _Range( iCS, szBuf, szBuf, "ContSupp" );
/1 loop through all e-nail records

/1 and find primary one
while( iOK && (i OK = GWVDB_Skip( iCS, 1)) )

/1 read e-mail address fromthe Cont SupRef field
/1 and status from Zip
i OK=GWV DB_Read( i CS, " Cont SupRef ", szBuf, i Buf Si ze );
i OK=GWV DB Read( iCS,"Zip", szBuf2, iBufSize);

/1l show e-mail address
ODS( szBuf );

/[l primary e-mail has a '1" in the second

421



Integrating With GoldMine

[l char of Zip

if( szBuf2[1] =="1" )
break; // found primary address!

}

/1 close the tables
iOK = GWDB Cose( iCl); iC1
iOK = GWWDB Cose( iCS); iCs
}

return;

H

non
e

Visual Basic Examples

This section contains function prototypes and examples.

Function prototypes

Structure for License function
Public Type GWiclnfo
Li censee As String * 60
LicNo As String * 20
SiteNane As String * 20
Li cUsers As Long
SQLUsers As Long
GSSites As Long
| sDenb As Long
I sServerLic As Long
I sRenot eLic As Long
I SUSALi ¢ As Long
i Reservedl As Long
i Reserved2 As Long
i Reserved3 As Long
sReserved As String * 100

End Type

LoadAPlI Functi ons

Public Declare Function GWV LoadBDE Lib "GwbS32.dlI" (ByVal sSysDir As

String, ByVal sCGoldDir As String, ByVal sCommonDir As String, ByVal
sUser As String, ByVal sPassword As String) As Long

Publ i ¢ Decl are Functi on GWNV Unl oadBDE Lib "GWwS32.dl 1" () As Long

Public Decl are Function GWV Set SQLUser Pass Lib "GwS32.dl | " (ByVal
sUserName As String, ByVal sPassword As String) As Long

Busi ness | ogi ¢ functions

Name- Val ue parameter passing to business |ogic function GWN Execut e(
Public Declare Function GWV Execute Lib "GwS32.dl " (ByVal szFunc As

String, ByVal Gwtr As Any) As Long

Public Declare Function GWWNV_Create Lib "GWwS32.dl 1" () As Long

Public Declare Function GWVNV_CreateCopy Lib "GWwS32.dl " (ByVal hgmv As

Long) As Long

422



Integrating With GoldMine

Public Declare Function GWV NV _Delete Lib "GWwS32.dl 1" (ByVal hgmv As
Long) As Long

Publi ¢ Declare Function GWVNV_Copy Lib "GWwS32.dlI" (ByVal
hgmvDestination As Long, ByVal hgmmvSource As Long) As Long

Publi ¢ Declare Function GWV GetLicenselnfo Lib "GwS32.dlI" (ByRef Liclnfo
As Any) As Long

Public Decl are Function GWV NV_CetValue Lib "GWwS32.dlI" (ByVal hgmv As
Long, ByVal nane As String, ByVal DefaultValue As String) As Long

Public Decl are Function GWV NV_SetValue Lib "GWwS32.dlI" (ByVal hgmv As
Long, ByVal nane As String, ByVal Value As String) As Long

Publi ¢ Decl are Function GWV NV_NameExi sts Lib "GwS32.dl 1" (ByVal hgmmv As
Long, ByVal nane As String) As Long

Public Decl are Function GWV NV_EraseNane Lib "GWwS32.dl 1" (ByVal hgmv As
Long, ByVal nane As String) As Long

Public Declare Function GWVNV_EraseAll Lib "GwS32.dlI" (ByVal hgmv As
Long) As Long

Public Declare Function GWVNV_Count Lib "GWwS32.dl1" (ByVal hgmv As
Long) As Long

Publi ¢ Decl are Function GWV NV_Get NaneFrom ndex Lib "GWS32.dl 1" (ByVal
hgmv As Long, ByVal index As Long) As Long

Publi ¢ Decl are Functi on GWV NV_GCet Val ueFrom ndex Lib "GWwS32.dl 1" (ByVal
hgmv As Long, ByVal index As Long) As Long

' Low Level DB funcs
Publ i c Decl are Function GWV DB Cpen Lib "GwS32.dl " (ByVal sTabl eNane
As String) As Long

Public Declare Function GWVDB Close Lib "GwS32.dl 1" (ByVal | Area As
Long) As Long

Publi ¢ Declare Function GWV DB Append Lib "GWwS32.dl 1" (ByVal | Area As
Long, ByVal sReclD As String) As Long

Public Declare Function GWVDB Replace Lib "GwS32.dl " (ByVal | Area As
Long, ByVal sField As String, ByVal sData As String, ByVal iAddTo As
Long) As Long

Public Declare Function GWVDB Delete Lib "GWwS32.dl 1" (ByVal | Area As
Long) As Long

Public Decl are Function GWV DB UnLock Lib "GWwS32.dl 1" (ByVal | Area As
Long) As Long

423



Integrating With GoldMine

Public Declare Function GWVDB Read Lib "GwS32.dlI" (Byval | Area As Long,
ByVal sField As String, ByVal sbuf As String, ByVal |bufsize As Long)
As Long

Public Decl are Function GWV DB Top Lib "GWwS32.dl 1" (ByVal | Area As Long)
As Long

Public Decl are Function GWVDB Bottom Lib "GWwS32.dl 1" (ByVal | Area As
Long) As Long

Public Declare Function GWVDB SetOrder Lib "GwS32.dlI" (Byval | Area As
Long, ByVal Stag As String) As Long

Public Declare Function GWVDB Seek Lib "GwS32.dlI" (Byval | Area As Long,
ByVal sParam As String) As Long

Public Declare Function GWVDB Skip Lib "GwS32.dlI" (Byval | Area As Long,
ByVal | Skip As Long) As Long

Public Declare Function GWVDB Goto Lib "GwS32.dlI" (Byval | Area As Long,
ByVal sRecNo As String) As Long

Publi ¢ Declare Function GWV DB Mve Lib "GwS32.dlI" (Byval | Area As Long,
ByVal sCommand As String, ByVal sParam As String) As Long
Public Declare Function GWVDB Search Lib "GWwS32.dl 1" (ByVal | Area As
Long, ByVal sExpr As String, ByVal sReclD As String) As Long

Public Declare Function GWVDB Filter Lib "GWwS32.dll" (ByVal |Area As
Long, ByVal sFilterExpr As String) As Long

Publ i c Decl are Function GWV DB _Range Lib "GWwS32.dl 1" (ByVal | Area As
Long, ByVal sMn As String, ByVal sMax As String, ByVal Stag As String)
As Long

Public Declare Function GWVDB RecNo Lib "GwS32.dl 1" (ByVal | Area As
Long, ByVal sReclD As String) As Long

Public Declare Function GWVDB IsSQ Lib "GwS32.dl 1" (ByVal | Area As
Long) As Long

Sync funcs
Public Decl are Function GWNV NewRecl D Lib "GWS32.dl|" (ByVal szRecid As
String, ByVal szUser As String) As String

Publ i ¢ Decl are Functi on GWV Updat eSyncLog Lib "GWwS32.dl " (ByVal sTable
As String, ByVal sRecID As String, ByVal sField As String, byval sAction
As String) As Long

Publ i c Decl are Functi on GWN Readl mpTLog Lib "GWwS32.dlI" (ByVal sFile As
String, |Del WhenDone As Long, sStatus As String) As Long

Public Decl are Function GWN SyncStanp Lib "GWwS32.dl 1" (sStanmp As String,
sQutBuf As String) As Long

Dat astream funcs
Public Declare Function GWVDS Query Lib "GWS32.dl 1" (ByVal sSQ As
String, ByVal sFilter As String, ByVal sFDim As String, ByVal sRD m As

424



Integrating With GoldMine

String) As Long

Public Decl are Function GWV DS Range Lib "GWS32.dl|1" (ByVal sTable As
String, ByVal Stag As String, ByVal sTopLint As String, ByVal
sBotLimt As String, ByVal sFields As String, ByVal sFilter As String,
ByVal sFDm As String, ByVal sRDOm As String) As Long

Public Decl are Function GWVDS Fetch Lib "GWwS32.dl|" (ByVval iHandl e As
Long, ByVal sbuf As String, ByVal iBufSize As Long, ByVal i GetRecs As
Long) As Long

Public Declare Function GWVDS Close Lib "GWwS32.dlI" (ByVval iHandl e As
Long) As Long

Publ i c Decl are Function GWV I sUser G oupMenber Lib "GWwWS32. DLL" (ByVal
szGroup As String, ByVal szUserlD As String) As Long
' Msc WnAPI funcs used by VB with the GwS32.DLL
Public Declare Sub CopyMenory Lib "kernel 32" Aias "Rt | MveMenory"
(Destination As Any, Source As Any, ByVal Length As Long)
Public Declare Function Istrlen Lib "kernel 32" Alias "IstrlenA" (ByVal
I pString As String) As Long

' NOTE! Al GWbS32 Funcs that return a string pointer should be
converted using
' the follow ng function. For exanple:

' sResult = PtrToStr(GWV NV_GCet Val ue(l1 GwPtr, "QutPut", ""))
Public Function PtrToStr(ByVal |psz As Long) As String
DimstrQut As String

Dim I ngStrLen As Long

I ngStrLen = Istrlen(ByVal |psz)

If returning |l arger packets, you may have to
' increase this val ue
I ngStrLen = 64000

If (IngStrLen > 0) Then
strQut = String$(lngStrLen, vbNul |l Char)
Call CopyMenory(ByVal strQut, ByVal |psz, IngStrLen)
IngStrLen = Istrlen(strQut)
PtrToStr = Left(strQut, |ngStrLen)
El se
PtrToStr = ""
End If
strQut = ""

End Function

425



Integrating With GoldMine

Logging In
Dim | Result As Long

| Result = GWV LoadBDE("c:\gnb\", "c:\gnb\gnbase\", "c:\gnb\deno\",
"MASTER', "ACCESS")

If IResult <> 1 Then
MsgBox "Unabl e to Load API"

Creating a Contact

The following example assumes that GMXS32.DLL has already been loaded and
functions have been declared.

DmlIGwtr As Long, _
s@Gwhvm As Stri ng,
sGWle As String,
| Result As Long

"//Create NV and pass pointer value to a variable
|GwWwtr = GWV.NV_Create()

"/IFill Variables with Nulls
sGvhvm = String$(100, Chr(0))
sGWle = String$(100, Chr(0))

"//Set Nanme Val ues

| Result = GWV NV_Set Val ue(l Gwtr, "Conpany", "FrontRange Sol utions")
I Result = GMWV NV_Set Val ue(l1 Gwtr, "Contact", "Calvin Luttrell")

| Result = GWV NV_Set Val ue(l Gwtr, "Phonel", "(310)555-1212")

| Result = GMWV NV_Set Val ue(l1 Gwtr, "Email", "cal vin@m coni)

| Result = GWV NV_Set Val ue(l GwPtr, "WebSite", "ww. gm cont)

'/ /| Execut e Busi ness Logi c Function
| Result = GWV Execute("WiteContact", | GWtr)

Enumerating a Container

The following example assumes that GMXS32.DLL has already been loaded and
functions have been declared.
"//Get count from NV for |oop
| Count = GMWW . NV_Count (1 GwPt )
For i =1 To | Count

"I/ Get name from NV
txttenpl. Text = GV NV_Get NarmeFr om ndex (I GWPtr, i)

"//Get value from NV
txttenp2. Text = GWW . NV_Get Val ueFr om ndex (| GwPtr, i)

426



Integrating With GoldMine

"/I/Display in list box
sResult = txttenpl. Text + "=" + txttenp2. Text

Li st1. Addltem sResul t
Next

DataStream

The following example assumes that GM5S32.DLL has already been loaded and
functions have been declared.

sFilter =" '" + UCase$(txtMatchVal ue. Text) + "' $ UPPER(Cont SupRef)"
i Handl e = GWV DS_Range(" Cont Supp", "Cont SPFD', "PE-MAIL ADDRESS', "PE-
MAI L ADDRESS~", "ContSupRef;", sFilter, " ", Chr(13) + Chr(10))
If iHandle > 0 Then
Do
"The initial fetch will tell us how much to allocate the
"buffer for a 50 record packet
sBuf = String$(1, 0)
i Buf Size = GWV DS _Fetch(i Handl e, sBuf, 0, 50)

‘Now, we actually grab sonme data..
sBuf = String$(iBufSize + 1, 0) 'NOTE: You nust initialize
"strings to the
" proper size before using.
| Res = GWV DS _Fetch(i Handl e, sBuf, iBufSize, 0)

"Check if nore data is available or not
If Left(sBuf, 1) = "3" Then

bEOF = True
El se
bEOF = Fal se
End If
"Add the results to a multi-line text box for display

txt Resul ts. Text = txtResults. Text + Md(sBuf, 14, iBufSize)
Loop until bEOF

El se
MsgBox ("Error: Invalid DS Handle!")
End If

Low-Level WorkArea

The following example assumes that GMXS32.DLL has already been loaded and
functions have been declared. The example opens up the CONTACT1 and
CONTSUPP tables to find a particular contact’s phone number and primary e-mail
address. The Contact name is stored in a VB Text box.

Dim| CIWA As Long
Dim| CWA As Long
Dim| CSWA As Long
Diml Res As Long
Di m sAccNo As String
DimsBufl As String
DimsBuf2 As String

"Initialization
| bl Enai | . Caption = ""
| bl Prevresult. Caption = ""

427



Integrating With GoldMine

| bl Company. Caption = ""
| bl Phone. Caption = ""
sAccNo = String$(21, 0)

'Open data files

| CIWA = GWV.DB_Cpen(" Cont act 1")
| C2WA = GWV DB_Qpen( " Cont act 2")
| CSWA = GWV DB_Qpen( " Cont Supp")

"If all files are opened K. ..
If (I CIWA And | C2WA And | CSWA) Then

'Set the index order
Res = GWV DB_Set Order (I CIWA, " Cont Nane")

"Performthe seek
I f GWVDB_Seek(l CIWA, UCase$(txtContact Nane. Text)) = 1 Then

'CGet the AccountNo for the matching record
| Res = GWV DB _Read(| CIWA, "Account No", sAccNo, 21)

Get the Phone and Conpany fields from Contactl

"Pre-allocate string buffer
sBuf 1 = String$(100, 0)
sBuf 2 = String$(100, 0)

'"Get the field data
| Res GWV DB_Read(| CIWA, "Conpany", sBuf2, 100)
| Res GWV DB _Read(| CIWA, "Phonel", sBufl, 100)

" Updat e the display | abels
| bl Company. Capti on = Tri n{sBuf2)
| bl Phone. Caption = Tri m(sBufl)

Cet the Previous result field from Contact 2

'Set the index order
| Res = GWV DB_Set Or der (1 C2WA, " Cont act2")

'Performthe seek
I f GWN DB_Seek(l C2WA, sAccNo) = 1 Then

"Pre-allocate string buffer
sBuf1 = String$(100, 0)
"Get the field data
| Res = GMW DB _Read(| C2WA, "PREVRESULT", sBufl1, 100)

‘"Display the field data
I bl Prevresult. Caption = sBufl

End | f
Get the e-mail address from Cont Supp

"Pre-allocate string buffer
sBuf 1 = String$(100, 0)

"Initialize the range linmts
sBuf1 = Left(sAccNo + Space$(20), 20) + "PE-MAI L ADDRESS"

'Set the range and go top
| Res GWV DB_Range(| CSWA, sBuf 1, sBufl, "ContSupp")
| Res GWV DB _Top( | CSWA)

"Loop until a primary e-mail is found
Do While (I Res = 1)
"Pre-allocate string buffers

sBuf 1 String$(100, 0)
sBuf 2 String$(100, 0)

428



Integrating With GoldMine

"CGet the field data
| Res GWV DB _Read(| CSWA, "Cont SupRef", sBufl, 100)
GWN DB_Read(l CSWA, "Zip", sBuf2, 100)

"Check if primary e-nail address
If Md$(sBuf2, 2, 1) = "1" Then

" Updat e the | abel
| bl Emai | . Caption = Trim sBuf1l)

Exit Do '"all done
End If

"Skip to next record
| Res = GWV.DB_Ski p(1 CSWA, 1)

Loop
El se

"Notify user of problem
MsgBox (" Could not |ocate the specified contact.")

End | f
El se

"All tables could not be opened.
MsgBox (" Could not open the data files.")

"Exit program
Unl oad Me

End If

Delphi Examples

This section includes function prototypes and examples.

Function prototypes

Type
TGWV Liclnfo = record
Li censee: array [0..59] of char;
LicNo: array [0..19] of char;
SiteNane: array [0..19] of char;
Li cUsers,
SQ.Users,
GSSi t es,
| sDenp,
| sServerlLic,
| sRenot elLi c,
I sUSALI c,
DLLVer si on,
Reservedl,
Reserved2: | ongi nt;
Reserved: array [0..99] of char;
end;

Type
hgmv = pointer;

// GwS32.DLL initialization functions
functi on GWV LoadBDE(sSysDir, sCol dDir, sComonDir, sUser,
Pchar): integer; stdcall; external 'GWwWS32. DLL';

sPasswor d:

429



Integrating With GoldMine

functi on GWV Unl oadBDE: integer; stdcall; external 'GwWS32.DLL';

functi on GWV Set SQLUser Pass(sUser Name, sPassword: PChar):integer; stdcall;
external 'GwWS32. DLL';

functi on GWV Get Li censel nfo( pGWV Li cl nfo: pointer):integer; stdcall;
external 'GwWS32. DLL';

/1 GwbS32. DLL Sync functions
functi on GWV Updat eSyncLog(sTabl e, sReclD, sField, cAction:
PChar):integer; stdcall; external 'GwS32.DLL';

functi on GWV Readl npTLog(sFile: PChar; bDel WhenDone: integer; sStatus:
PChar): integer; stdcall; external 'GwS32.DLL';

procedure GMV NewRecl D(sRecl D, sUser: PChar); stdcall; external
' GWbS32. DLL' ;

procedure GWV SyncStanmp(sStanp, sCQutBuf: PChar); stdcall; external
' GWbS32. DLL' ;

// GvwbS32.DLL DataStream functions
functi on GWV DS _Range(sTabl e, sTag, sTopLimt, sBotLimt, sFields,
sFilter, sFDim sRDim PChar): longint; stdcall; external 'GWwWwS32.DLL';

function GWV DS Query(sSQ., sFilter, sFDim sRDim PChar): |ongint;
stdcal | ; external 'GWwWS32.DLL';

functi on GWV DS _Fetch(i Handl e: |ongint; sBuf: Pchar; iBufSize, iGetRecs:
integer): longint; stdcall; external 'GWwWS32.DLL';

function GWV DS C ose(i Handl e: longint):longint; stdcall; external
' GWbS32. DLL' ;

/1l GwbS32. DLL DBF wor karea functions
functi on GWW DB _pen(sTabl e: Pchar): |ongint; stdcall; external
' GWbS32. DLL' ;

function GWV DB C ose(l Area: Longint): longint; stdcall; external
' GVbS32. DLL' ;

functi on GWV DB _Append(| Area: Longint; sReclD: PChar): longint; stdcall;
external 'GwWS32. DLL';

functi on GWV DB Repl ace(l Area: Longint; sField, sData: PChar; i AddTo:
integer): longint; stdcall; external 'GWwS32.DLL';

function GWV DB Del ete(l Area: Longint): longint; stdcall; external
' GWbS32. DLL' ;

functi on GWV.DB _Unl ock(!l Area: Longint): longint; stdcall; external
' GWbS32. DLL' ;

functi on GWV DB _Read(l Area: Longint; sField, sBuf: PChar; iBufSize:
integer): longint; stdcall; external 'GWS32.DLL';

430



Integrating With GoldMine

function GWW DB Top(l Area: Longint): |ongint; stdcall; external
' GwbS32. DLL' ;

function GWVDB Botton{l Area: Longint): longint; stdcall; external
' GwbS32. DLL' ;

function GWV DB _Set Order (| Area: Longint; sTag: Pchar): longint; stdcall;
external ' GwS32.DLL';

functi on GWV DB _Seek(l Area: Longint; sParam PChar): |ongint; stdcall;
external ' GvbS32. DLL" ;

functi on GWV DB _Ski p(l Area: Longint; iSkip: integer): longint; stdcall;
external 'GwWS32. DLL';

function GWV DB Goto(l Area: Longint; sRecNo: PChar): longint; stdcall;
external 'GwWS32. DLL';

functi on GWV DB Mwve(l Area: Longi nt; sConmand, sParam PChar): |ongint;
stdcal |; external 'GwWS32.DLL';

functi on GWV DB _Search(l Area: Longint; sExpr, sReclD: PChar): |ongint;
stdcal |; external 'GwS32.DLL';

function GWVDB Filter(l Area: Longint; sFilterExpr: Pchar): longint;
stdcal |l ; external 'G@GwS32.DLL';

functi on GWV DB _Range(l Area: Longint; sMn, sMax, sTag: PChar): |ongint;
stdcall; external 'G@GwS32.DLL';

functi on GWV DB _RecNo(l Area: Longint; sReclD: PChar): longint; stdcall;
external ' GwS32.DLL';

function GWVDB | sSQ.(l Area: Longint): longint; stdcall; external
' GwbS32. DLL' ;

/1 GwbS32.DLL Quick one-field access functions
functi on GWV DB_Qui ckSeek(sTabl eNane, slndex, sSeekVal ue, sReclD:
PChar): longint; stdcall; external 'GWwWS32.DLL';

functi on GWV DB_Qui ckRead(sTabl eNane, sRecl D, sField, sValue: Pchar; ilLen:
integer): longint; stdcall; external 'GWS32.DLL';

functi on GWV DB_Qui ckRepl ace(sTabl eName, sRecl D, sField, sValue: Pchar;
i AddTo: integer): longint; stdcall; external 'GWwWS32.DLL';

/1 GwbS32.DLL M sc functions
functi on GWVI sUser G oupMenber ( szGroup, szUserlD: PChar): |ongint;
stdcal |; external 'GWwWS32.DLL';

functi on GWV User Access(Option: longint): longint; stdcall; external
' GWbS32. DLL' ;

functi on GWV Cal Access(RecType, Userl D, Numberl: PChar): longint; stdcall;
external ' GwS32.DLL';

431



Integrating With GoldMine

functi on GWV Hi st Access(RecType, UserlD: PChar): longint; stdcall;
external ' GwS32.DLL';

/1 QGwbS32. DLL business | ogic functions
functi on GWV Execut e(Func: Pchar; PGWNV: hgmmv ): longint; stdcall;
external 'GwWS32. DLL';

/1 create, release & copy name val ue containers
function GWW.INV_Create: pointer; stdcall; external 'GwS32.DLL';

functi on GWV.NV_Cr eat eCopy(PGWNV: hgmv): pointer; stdcall; external
' GwbS32. DLL' ;

procedure GMV NV_Del et e( PGWV: hgmv); stdcall; external 'GwS32.DLL';

procedure GMWV NV_Copy(Destination, Source: hgmmv); stdcall; external
' GWbS32. DLL' ;

/1 get and set val ue by name
functi on GWV NV_Get Val ue( PGWV: hgmmv; Name, Defaul t Val ue: PChar):
PChar; stdcall; external 'GwS32.DLL';

procedure GWV NV_Set Val ue(PGMWNV: hgmmv; Nane, Val ue: PChar); stdcall;
external ' GwS32.DLL';

// Check if nane exists. returns: O failed, 1 success
functi on GWV.NV_NaneExi st s(PGWNV: hgmv; Nane: PChar): |ongint;
stdcal | ; external ' GwS32. DLL';

/1 remove nane(s)
procedure GMV NV_Er aseNane( PGWV: hgmv; Name: PChar); stdcall;
external 'GwWS32. DLL';

procedure GMV NV_EraseAl | (PGWV: hgmmv); stdcall; external 'GwWS32.DLL';

/1 iterate over nane-value list (1 based)
functi on GWV.NV_Count (PGWNV: hgmv): |ongint; stdcall; external
' GWbS32. DLL' ;

functi on GWV.NV_Get NaneFr om ndex( PGWNV: hgmv; |ndex: |ongint): PChar;
stdcal |; external 'GWwWS32.DLL';

functi on GWV.NV_Get Val ueFr onl ndex( PGWNV: hgmv; |ndex: |ongint): PChar;
stdcal |l ; external 'G@GwS32.DLL';

/1l Set a series of values in one shot
procedure GMV NV_Set St r( PGUWNV: hgmv; dl mName, dl nVal: Char; StringVval:
PChar); stdcall; external 'GwbS32.DLL';

Logging In

The followi ng exanpl e assunes that GWS32.DLL has al ready been | oaded and
functi on addresses have been retrieved

/1 Login to G\b

i Ret := GWV LoadBDE(' C:\GMV6', 'C: \GVb\ GVBASE' , 'C \GVb\DEMD , ' NELSON |,
")

432



Integrating With GoldMine

if iRet < 1 then
Showvessage(' LoadAPl Failed. Err: '+IntToStr(iRet));

Creating a Contact

The following example assumes that GMXS32.DLL has already been loaded and
function addresses have been retrieved.

/!l Create a new NV cont ai ner
pGM\V : = GWV NV_Create;

/] Test if NVis valid
If pGWV <> nil then
begin
/1l Load the NVs to create the contact record
GWV NV_Set Val ue( pGW\V, ' Conpany', 'FrontRange Sol utions');

GWV NV_Set Val ue( pGM\V, ' Contact', 'Nelson Fernandez');
GWV NV_Set Val ue( pGM\V, ' Phonel', ' (310)555-1212");
GWV NV_Set Val ue( pGW\V, ' Email', 'nel son@m con);

GWV NV_Set Val ue( pGW\V, 'WebSite', 'ww. gmcon);

/1 Exec the WiteContact function
if GWVN Execute('WiteContact', pGWV) > 0 then
begin
Showessage(' Contact record was created. Account NO=' +
GWV NV_Get Val ue( pGV\V, ' AccountNo', '') );

/I Renove the pGW\V
GWV NV_Del et e( pGW\V) ;
end
el se
/1 Display error
Showessage(' WiteContact Failed.');;
end

el se
/1 Display Error
Showessage(' Coul d not create NV container.');

Enumerating a Container

The following example assumes that GMXS32.DLL has already been loaded and
function addresses have been retrieved.

// Determ ne the nunber of returned val ues
| Count := GWVW.NV_Count (pGW\V) ;

/1 If >0 then iterate through the |ist
If [Count > O then
For i :=1to |Count do // Add to the results neno control
nResul ts. Text := nResults. Text +
GWV NV_Get NaneFr om ndex( pGWN\V, i ) +' ="' +
GWV NV_Get Val ueFr om ndex( pGWN\V, i) +#13+#10;

433



Integrating With GoldMine

DataStream

The following example assumes that GMXS32.DLL has already been loaded and
function addresses have been retrieved.

i Handl e: =GMW DS_RANGE(" Cont supp', ' Contspfd', ' PE-MAIL ADDRESS',
' PE- MAI L ADDRESS~', ' Cont SupRef;', PChar('''' +
Upper Case( cebMat chval ue. Text)+' '* $ Upper (Cont SupRef)"), "', #13+#10);

If iHandle > 0 then
Begi n
bDone : =FALSE
Repeat

/1 Get Buffer Size
i Buf Si ze: =GWV DS_Fet ch(i Handl e, NIL, 0, FETCH_SI ZE);

/1A locate Buffer Menory
pcBuf fer: =Al | ocMen(i Buf Si ze) ;

/Il Fetch Data
I res: =GWV DS_Fet ch(i Handl e, pcBuffer, iBufSize, 0);
if lres>0 then // Fetch Successful ly?
begin

/1Get results
sResul ts: =sResults + Copy(StrPas(pcBuffer),12,i BufSi ze-12);
FreeMem( pcBuffer, iBufSize); [/ Free buffer menory

i f Copy(sHeader, 1,1)<>"3" then //End of File in QW
bDone: =TRUE
el se
bDone: =FALSE;

end;

until bDone
I res: =GWV DS_d ose(i Handl e) ;
end;

Low-Level Work Area

The following example assumes that GMXS32.DLL has already been loaded and
function addresses have been retrieved. The example opens up the CONTACT1 and
CONTSUPP tables to find a particular contact’s phone number and primary e-mail
address.
Var
| Res, | CIWA, | C2WA, | CSWA: | ongi nt;
aAccNo: array[O0..20] of char;

aVal uel: array[O0..100] of char;
aVal ue2: array[O0..100] of char;

begi n
/1 Open files
| CIWA : = GWV DB _Open(' Contact1');
| C2WA : = GWV DB _Open(' Contact?2');
| CSVWA : = GWV DB_Open(' Cont supp');

/1 Make sure all files were opened OK
if (1CIWA>0) and (I C2WA>0) and (I CSWA>0) t hen

434



Integrating With GoldMine

begin
/1 Set the index order
| Res : = GWV DB _Set Order (| CIWA, ' Cont Nange');
/] Performthe seek
I f GWN.DB_Seek(| CIWA, PChar (Upper Case(cebSear chVal ue. Text)) )=1 then
begin
/'l Read the Account No
GWV DB _Read(l CIWA, ' AccountNo', aAccNo, 21);
/'l Get the field data
| Res := GWV DB _Read(| C1WA, ' Conpany', aVal uel, 100);
//Display the results
cl Conpany. Caption : = StrPas(aVal uel);
//lnit the range limt string
St r PCopy(aVal uel, Copy(StrPas(aAccNo), 1, 20)+' PE- MAI L ADDRESS' ) ;
/1 Set the range and go to Top
| Res : = GWV. DB _Range(l CSWA, aVal uel, aVal uel, 'Contsupp');
| Res : = GWV.DB_Top(l CSWA) ;

/1 Loop through records..
Wiile |Res = 1 do
begi n

// Read the field data...

| Res : = GWV DB _Read(l CSWA, ' Cont SupRef', aVal uel, 100);
| Res : = GWV DB _Read(l CSWA, 'ZI P, aValue2, 100);
if avalue2[1] = '1" then
begin
cl Emai |l . Caption : = aVal uel;
Exit;
end;
| Res : = GWVDB_Ski p(l CSWA, 1);
end;
end
el se

/1 Notify user of problem

Showiessage(' Coul d not | ocate the specified contact!');
end

el se
/1 Notify user of problem
ShowMEssage(' Coul d not open all data files');
GWV _Unl oadBDE;
end;

435






General Index

Activities
creating or updating ...........cceeeuenene. 277
AddContactGrpMembers................. 284-86
AddContactGrpMembers function.......284
AddFolder function..........ccccoovvvvrvninnne. 310
Alert
attaching an alert to the specified
contact record ..., 289
returning alerts attached to a contact
TECOT .o 288
returning all defined alerts ................ 289
API
logging in multiple users ..................... 99
Append function.........ccceceeevrvereuennne. 33,190
AttachTrack function ........ccceeeevnnneeee. 282
Automated Process..........ccccovvvrerevnnnenee 282
retrieving the default contact
automated process........c.ccceccevrunenee 294
BDE session
CloSINg ....ocviiiiiiiicicic 97, 98
loading ........cccoeovviviiiiinniiiiine, 94, 95
Boolean operator..........cccccoeevreincnnnncnns 371
BRA ... 25
Business Logic Methods
ACCESSING ...vevviviiiiiiiic e 109
comparing methodology to that of
GMBS32.DLL ..., 92
using to simplify procedures............. 268
working with ... 268
C++ examples for GM5532.DLL......415-21
CALDBF......cccooiiiiiiiiciciice, 384-85
SQL...oiiiiiiiiiiicse 400
XDASE ... 384
CalComplete function............ccc.c...... 54,208
Calendar
completing an activity .................... 54-55
deleting Calendar items..................... 295
CallerID function ......cceeeeeeeeeeeeeeeeennn. 55, 210
Close function ......coeeeeeeeeeeeeeeeeeeeeeas 35, 190
code examples
for GM5S32.DLL.........ccccceuvurunnnne. 415-35
conditionals .......ccoeveueirreennnece 371

contact group

adding contacts to.........c.cccccecvvirninnnnne. 284

Creating ..o 283
Contact Groups

retrieving names of contact groups..291
contact information

accessing, using Open, Move, or Read

accessing, using RecordObj ......... 48,201
contact record

creating or updating an additional... 273

linking contact records to an accounting

application ........cccoeeeeevrecrneerencnnne. 30
Contact Record
adding a record............cccccvueunnns 129, 164
attaching an alert to the specified
contact record..........ccccceiiiiinnnen. 289
attaching an automated process........ 282
creating or updating ...........c.cccceueeeee. 270
creating or updating a referral ....276-77
deleting the current record ........ 129, 165
evaluating an Xbase expression on a
contact record ..., 292
reading a Contact1 or Contact2 record
........................................................... 287
retrieving the default contact
automated process..........cccceceeueuenns 294
returning alerts attached to a contact
1eCOTd. ..o, 288
updating notes of a primary contact
1eCOTd. ..o, 272
CONTACTL.DBF.......ccoooviiiinne. 385-87
SQL .o 401
XDbase........cccciiiiiiiniiiiiii 385
CONTACT2.DBF
SQL .o, 404
XDbase........ccociiiiiiiiiiiiiiii 388
ContactLogin function...........cccccccceunies 323
CONTGRPS.DBF
SQL .ot 405
XDbase.......ccccciiviiiiiiniiiiiiie 389
CONTHIST.DBF
SQL .o, 406
XDaSe ..., 389

437



Integrating With GoldMine

CONTSUPP.DBEF.........ccccecvuvviinnnns 391-92
SQL ..o 407
XDASE....covvireiiiricieeee e 391

COUNTER function.......ccceeeveeeeeenne.. 58, 211

CreateContactGroup function............... 283

CreateRemoteLicense function ............. 300

Curtaining
checking for record curtaining.......... 300
retrieving visible fields....................... 298

data
accessing low-level data using work

ATCAS...eeeeeeeeeeeeereeerreeeeeeeeennanes 125, 161
merging data into a document............ 29
retrieving data with DataStream ..... 119,
154

data file
ACCESSING....ccvviiviiiniiiniiciecens 33, 189
closSing.......covvvvieiiiiiiiiiiiicis 127,163
OPeNING.......ccovvvvruenrnnnns 40, 126, 162, 194
querying for a field value........... 130, 165

database
file location .........cccceeveeeneccnvnnnncnne. 383
sessions, handling..............cccccceeueiiis 269
updating information..................... 29-30

database structures
CAL.DBF......cccoviiiiiiiiiiins 384-85
CONTACTL.DBF ........cccccoeuvuennne 385-87
CONTSUPP.DBF...........cccceeueunnnee 391-92
GoldMine 5.5......cccvveenneccnnns 383-97

GoldMine Sales and Marketing 397-413
DataStream

advantages of using.................... 119, 155
Close subcommand....................... 60, 214
Fetch subcommand....................... 59, 213
fUNCHONS. ...evveeeviieeieeeeeeieeeee 120, 155
performance advantages.............. 61, 216
record selection .........cccoeuvevvennnen. 120, 155
retrieving data with................. 119, 154

returning GoldMine record data 58, 212
date and time stamps

converting to TLog timestamps.......... 80
dBASE functions ..........ccccceeviniiiniiiinnnnas 370
DDE.............. See Dynamic Data Exchange
DDEINITIATE function ...........ccecevenene. 31
DDERequestor ..........cccccevieiviiiniciicciane 25
decrypting encoded text...............c.c....... 294
DecryptString function.............cceeenee 294

Delete function ......ceceeeeeeeeeeveevceeennnn. 35,191
DeleteFolder function.......c.cccceeevveunennee.. 311
DeleteMail function .........ccccoeevvevvenennnen. 307
DeleteMessages function ....................... 317
DeleteSchedule function ........................ 295
Delphi examples.......c.cccccccvvveeennenennne. 429

Delphi examples for GM5S32.DLL..429-35
Detail Record

creating or updating............ccccceeuenee. 274
developers FTP site......c..cccoecvveencnnnennne 24
dialog box

displaying a message dialog box 70, 223
document link, creating or updating..... 69,

222
Dynamic Data Exchange......... 27-89, 27-89

APPEND function.........ccceceveveueneee. 33-34

application service name...................... 30

CalComplete........ccoeeveinevnrcnnnen. 54-55

CallerID......ccoeeeireiiinnee 55-57, 55-57

Close function........c.ccceeeeveereeennee. 34-35

Counter function.........ceceeeeevveerecnnee. 58

DDE item string .........cccccovvvivvinnnnnne. 31

definition.......coceeeveveenicncccceee 27

establishing a conversation.................. 31

Expr function........ccccceeeeevennccnne. 62-63

Filter..c.ooooiieiiiccecce 35-37

FormAddFields function.................... 109

FormClearFields function.................... 65

FormCloseForm .......cccccoevvcincinncnnne 65

FormGetFieldName..........ccccccoeueuennenn. 66

FormNewFormNoO.........ccccevvrinininnns 66

FormQueryCreate..........ccccccoeuvnnene. 66-67

GoldMine license macros ...88-89, 88-89

GoldMine's DDE server.................. 27-89

identifying incoming telephone

NUMDETS .....oveeiiiiiiiciccceee 30

inserting incoming e-mail............... 27-30

INSHIStOrY ...oovviiiiiiiiiiiicice 67-69

LinkDOC ... 69-70

linking e-mail to external systems...... 30

TILACTOS .eeeeeeeeeeeeeeeeereeeeeeeeenenes 80, 234

merge form macros.............. 27-89, 27-89

merging a document with ................... 29

MOVE ..o 37-40

MSGBOX.....coviiiiiiiiiic 70-72

MsgBox function................. 70-72,70-72

NewForm......cccocevevencncnenicieeennn 72-74

438



Integrating With GoldMine

NewGroup ......cceevevviviineiniccnns 74-75
NewMember function .................... 75-76
Open......cocviiviiiiiiiicecee, 40-42
Range ..., 42-43
Read.......coooiiiiiiiiiiiicc, 76-78
RecNO....c.oiiiiiiiccc 43-44
Replace function........ccceecevveencinicnennee 46
Search........ccooeeeiiiviiciciic, 78-79
SendPage ........ccccoeueuiiniiiiiine 78-79
Service tOPIC.....ccecuvivuirienierieieicieieenne 31
StatusMSg ..o, 79
transferring data to accounting
application .........ccecveeivccncinncnnnnne. 30
UnlocK......cooomeieieiiiccieicen, 47-48
updating database............cccc..... 29-30
using to query for data.............cco...... 30
working with DDE functions............... 33
E-mail
accessing e-mail templates................. 312
account information, retrieving ........ 313
adding an E-mail Center folder......... 310
deleting an E-Mail Center folder.......311
deleting online e-mail messages ....... 317
filing a message in History ................ 307
managing internet e-mail preferences
........................................................... 318
name/value functions.............c.c........ 301
obtaining a list of E-Mail Center folders
........................................................... 311

queuing a message for delivery \r...305
retrieving a manual list of recipients 318
retrieving e-mail account information

........................................................... 313
returning a list of unique From
addresses..........cccoeeiiciniiicnn, 312
saving a manual list of recipients......318
updating an e-mail address............... 271
empty child container, creating............. 114
empty record
adding.......ccoveiiiiiiiiiiiiis 33, 190
encrypting text ..o, 293
EncryptString function ...........cccccceueeeee 293
exported records
counting the number of ........ 67,220, 221
Expr function.......c.ccccceeeevccnnncnnnne. 62,217
external application
linking with GoldMine fields ...... 48, 200

field
deleting from a form.........c.cccceuvuvnnnne. 65
returning a FormNo value to register
unattached fields...........c.ccccoveernenn. 66

field name
returning for an expression, macro, or

field ..oieeieeeeeeeeeeee e, 66
field value
changing........cccccoveunnne. 44-46,131, 166
querying a data file for............... 130, 165
reading........ccoocevivviiiiiniiiciininns 138, 176
replacing........cccccvvvveiivviiniininnnns 139, 176
Field AccessRights function.................... 298
FileMail function..........c.cccceeevveveeeveenneene. 307
filter creation ........c.cceeevveeereeenveennnne. 132, 168
Filter function.........cccceevveeevrevviecneenenn, 35,191
FolderList function.........ccccceeeevveenveenneene., 311
form
adding merge fields ..........ccccceunnnnn. 109
closing a profile .........cccccovviiiiininnnne. 65
deleting a field from a form................. 65
FormAddFields function.......... 63, 218, See
Dynamic Data Exchange
FormClearFields function................. 64,218
FormCloseForm function.................. 65, 218
FormCreateFile function................... 65,219
FormGetFieldName function........... 66, 220
FormNewFormNo function............. 66, 220
FormQueryCreate function.............. 67,220
FromList function.........cccoevvevieeneennnee, 312
GetAccountsList function....................... 313
GetActiveOppty function................. 53, 207
GetAllAlerts function.........cccceveeuveeneene. 289
GetContactAlerts function ..................... 288
GetEmailPrefs function...........c..c.......... 318
GetGroupName function............ccceeuee. 291
GetGroupUsersList function.................. 290
GetLoginCredentials.................. 53, 205, 206
GetManualRcptList function ................. 318
GetNewContactAP function.................. 294
GetUserAccess function..............c..c........ 297
GetUserMemberships function ............. 291
GetUsersList function ........c.ccccveeuveneeene. 290
GMBS32.DLL ., 125,161
database access and sync log updates 91
loading and logging in ...........cccccoce..... 93
synchronization functions.......... 140, 178

439



Integrating With GoldMine

GM5S32.DLL code examples........... 415-35
L@ 415-21
Delphi..cccoeevneiiiicceccene 429-35
Visual BasiC......coovvevveeveeceeeeeecnnns 422-29

GMBTP.DLL....oooeeeeeeeeeeeeeeeeee 101

GMW_DB_Append function......... 129, 164

GMW_DB_Bottom function .......... 137,174

GMW_DB_Close function.............. 127,163

GMW_DB_Delete function............ 129, 165

GMW_DB _Filter function.............. 132, 168

GMW_DB_Goto function............... 136,172

GMW_DB_IsSQL function............. 127,163

GMW_DB_Move function............. 135,171

GMW_DB_Open function.............. 126, 162

GMW_DB_QuickRead function.... 138, 176
GMW_DB_QuickReplace function139, 176
GMW_DB_QuickSeek function..... 138, 175

GMW_DB_Range function............ 132,168
GMW _DB_Read function .............. 130, 165
GMW _DB_RecNo function............ 130, 166
GMW_DB_Replace function.......... 131, 166
GMW _DB_Search function............ 133, 169
GMW _DB Seek function................ 134,170
GMW _DB_SetOrder function ....... 134,171
GMW_DB_Skip function ............... 137,174
GMW_DB_Top function ................ 136,173
GMW_DB_UnlocK ......ccoevvevveereennne 131, 167
GMW_DS_Close.............. 120, 125, 155, 160
GMW_DS _Fetch....cocooovvvvveveiiennnns 120, 155
GMW_DS_Query ........cccccueurununenne. 120, 155
GMW_DS_Range..........ccccceuvuruenee. 120, 155
GMW_Execute function...........c.cue.... 109

GMW_GetLicenselnfo function.... 118, 119

GMW_LoadBDE function. 94, 96, 146, 149,
150

GMW_MUBeginSession function......... 100

GMW_MULogin function........................ 99
GMW_MULogin function........................ 99
GMW_MULogout function............ 100, 151
GMW_NewRecID function............ 142,180
GMW_NV_AppendEmptyNvValue
fUNCHON e 115, 322

GMW_NV_AppendNvValue function 321

GMW_NV_AppendValue function..... 114,
115

GMW_NV_Copy function..................... 102

GMW_NV_Count function.................... 107

GMW_NV_Create function................... 101
GMW_NV_CreateCopy function.......... 102
GMW_NV_Delete function ................... 103
GMW_NV_EraseAll function................ 106
GMw_NV_EraseName function........... 113
GMW_NV_EraseName function .......... 106

GMW_NV_GetMultiValue function .... 113
GMW_NV_GetMultiValueCount function

............................................................... 111
GMW_NV_GetNameFromIndex function

............................................................... 107
GMW_NV_GetNVValue function........ 112
GMW_NV_GetValue function.............. 103
GMW_NV_GetValueFromIndex function

............................................................... 108
GMW_NV_GetValueType function..... 109
GMW_NV_IsRoot function ................... 110

GMW_NV_NameExists function.......... 104
GMW_NV_SetEmptyNvValue function

............................................................... 114
GMW _NV_SetNvValue function ......... 113
GMW _NV_SetStr function .......cccuun....... 108
GMW _NV_SetValue function............... 104

GMW_ReadImpTLog function .... 141, 180,
230

GMW_SetSQLUserPass function............ 94
GMW_SyncStamp function........... 143, 181
GMW _UnloadBDE function.............. 97,98

GMW_UpdateSyncLog function . 140, 179,
229

GMW _UserAccess function........... 116, 231
GoldMine 5.5 database structures ...383-97
GoldMine KnowledgeBase....................... 24

GoldMine license macros.......see Dynamic
Data Exchange, see Dynamic Data

Exchange
GoldMine Sales and Marketing database
structures ..........ccoeeiieieiecinnnn. 397-413
group
adding a group member ...................... 76
creating an empty group ..........ce.eu.... 74
History
tiling a message in History................ 307
history record
creating........ccocoveeviiieniciciiiccn, 67,221
creating or updating...........c.ccceeueenne 281

440



Integrating With GoldMine

IIS extensions, and multi-threaded
applications........c.ccccceeeveeuecverrecnennenes 101
import file
importing a prepare TLog import file

........................................... 141, 180, 230
index
file location.........cccccoveiiiiniiine, 383
setting the current index tag......134, 171
INFOMINE.DBF
SQL ..o 408
XDbase.......ocoviiiiiiiii 392
InsHistory function ...........ccceueueeee. 67,221
integrating with GoldMine
methods ..o 22
integration tools
BR4 ..o 25
DDERequestor.........ccccevevenienieieienenens 25
interfacing with GoldMine............. 383, 399
internet
e-mail preferences.........ccccccccevrveuenennne. 318
IsContactCurtained function.................. 300
ISSQL function .......ccceceeveveveveveeeneennee. 37,192
KnowledgeBase...........cccccoevvvnnnnnnnnne. 24
license
generating a remote license file......... 300
removing a remote license.................. 301
returning GoldMine’s Licensing
Information .....ceeeeeeeeeeeeeeennne.. 118,119
LinkDoc function......cccceeeeeeeeeeeeeneen.. 69, 222
linked document
creating or updating ...........cceeeuenene. 275
logical evaluators............ccccccevvvicuiininnne. 371
logicals........ccccoeuiinniiiiiiiiicce, 374
login
creating a new GoldMine login......... 296
login sessions, switching between ........ 100
LOOKUP.DBF
XDbase.......ccoviviiiiiinii 393
LOOKUP.INL.......coooiiiiiiiiiiniiee 369
macro
identifying by file name................ 77,226
identifying by number.................. 76, 226
TIVACTOS wvvveeeeeeeeeeeeeeeeeeeeeeeeerneeeeessseaennns 76, 226
creating ... 76, 226
DDE macros for Merge Forms.....87, 241
DDE macros for the GoldMine License
..................................................... 89, 242

mail message

deleting a message...........c.cccoeuvurunnnne. 307
deleting online e-mail messages ....... 317
tiling a message in History ................ 307
preparing an Name/Value container to
forward a mail message................. 309
preparing the NV container for a new
mail message .........coevueiciriniennnne. 308
queuing a message for delivery ........ 305
reading......ccccoeeiviviiiiiiiniiciee 301
retrieving a list of messages waiting
ONliNe ..., 314
retrieving online messages ................ 316
saving a mail message into GoldMine
........................................................... 306
updating ..., 306
MAILBOX.DBF
SQL.oiiie e, 409
XDbase.......cccciiiiiiiniiiiiiii 394
merge fields added to a form................. 109
merge form
adding.......cccccoeiiiiiiiiiiiiiii 72,225
DDE macros............... See Dynamic Data
Exchange, See Dynamic Data
Exchange
merging data into a document ................ 29
message dialog box display ............... 70-72
message,displaying in GoldMine’s status
DAL e 79, 228
Move function............ccooeeiieinnnnen. 37,192
MS Word for Windows, Linking
GoldMine to.......cccoeveveiiiicricicie, 30
MsgBox function...........cccccceveveuinnnns 70,223
multi-threaded applications
special considerations...........c.ccccc...... 100
multi-value NV pairs ......cccceevivcnncnns 111
appending string values to ................ 115
deleting values from..........ccceueuenene. 113
retrieving values..........cccccccovvninnne. 113
Name/ Value container
assigning a container to a parent......113
copying values between containers..102
creating .......cococeevvvveiciniiccce 101
creating an empty child container
within the parent..........ccccccveennenn. 114
creating with copied values............... 102
deleting a container.............c.cccceueuuee. 103

441



Integrating With GoldMine

determining container position in NV

hierarchy ..o 110
preparing an NV container to forward a
mail message...........ccccevvnnnininnn 309
preparing the container for a new mail
IMESSAZE .....vevvvreneiieneneiaeneeeenenenes 308
reading values from a container....... 103
retrieving containers from an NV pair
........................................................... 112
storing NV pairs in a container......... 104
Name/ Value Functions.......................... 101
E-mail ..o 301

Name/Value pair
determining the type of an NV pair. 109

finding an NV name..........c..ccccccce... 107
finding an NV value..........c........... 108
getting the number of values in a multi-
value pair......ccocveeveneeniicnccnne. 111
removing all NV pairs from a container
........................................................... 106
removing one NV pair.........cccc.e..... 106
retrieving containers from................. 112
retrieving values in a multi-value pair
........................................................... 113
searching for an NV pair ................... 104
setting NV pairs ... 108
totaling NV pairs in a container ....... 107
working with multi-value NV pairs 109
NewForm function......cceeeeeeeveueeennn. 72,225
NewGroup function...........cecceeeeevveennenene 74
NewMember function ...........ccccevevennnne 76
NonCurtainedFields function ............... 298
Notes, updating notes of a primary
contact record..........ccoeviiiiiiiiiiieninnns 272
OnlineList function.........ccccovevvieininnne. 314
Open function........c.ccccevecenecencinncncne 40, 194
OPEratOTS....ccuevuiiiiiiiieieicieieeceeceeee 371
OPMGR.DBF
SQL oo 410
XDase......ccoorieieieiiiiiiie 395
pager message
creating and sending.................... 78,228
PERPHONE.DBF
SQL ..o 411
XDbase.......cccciiiiiiiiiii 396
PlayMacro function...........cccccccevenee 76,226
PrepareNewMail function ..................... 308

QueueMail function..........ccoccevevivevnnennne 305
QuickRead.......ccccoevveviiiiieeieeee. 138,176
QuickReplace........coceevvvecenennnee 139, 176
QuickSeeK.......ccouveeiiiiiiiieeeeeeen 138, 175
Range function..........ccccceevviiiniciennns 42,195
Read function......cceceeeeeeeeeeeeeeceeeeenee, 43,196
ReadContact function...........ccccccccevenenee 287
ReadMail function..........cccccoevvviiiinnnnne. 301
ReadRecord function..........cccccccevvnnee 286
RecNo function.........cccceceeeiviricinnns 44,197
record
checking the current record number or
record ID.......cccccviviiiiinn. 130, 166
creating a subset of records....... 132, 168
deleting the current record.......... 35,191
getting a new record...........cccoeeueuennne 180
moving to a specified record...... 37, 136,
172,192
moving to the first match .......... 134,170
moving to the first record.......... 136, 173
moving to the last record........... 137,174
moving to the previous or following
TECOTA oo 137,174
positioning the pointer to a specified
TECOTA oo 135,171
reading a ..., 286
unlocking ......ccccveiiiiiiiiiine, 47-48
unlocking a record..................... 131, 167
RecordObj
subfunctions ............ccccceeiininnnne. 49, 201
RecordObj function...........ccceueuuenee 48,200
referral, creating or updating................ 276
remote license
generating a remote license file ........ 300
TEMOVING ..o 301
RemoveRemoteLicense function........... 301
Replace function.........ccceceeveereenncnene 45,198
RESITEMS.DBF
SQL o 412
XDbase........cccoviiieiiii 396
RetrieveMessages function.................... 316
SaveMail function .........cccceveeevnrenenene. 306
SaveManualRcptList function............... 318
search
limiting the search scope............ 132, 168
performing a sequential search. 133, 169
SEARCH function ......ceeeeeeeeeeeeueeenanne 46,199

442



Integrating With GoldMine

Security
handling GoldMine Security ............. 296
reading security and rights for a DLL
ST eeeeeeeeeeeeeeeeeeeeeeeeeeeeesaneeees 116, 231
retrieving field-level access rights ....298
retrieving security access ................... 297
validating a Web user name and
PASSWOTId......cevviiiiieiiiciicercnee 323
seek
moving to the first record match...... 134,
170
seeking a record............cccccueunenn. 138,175
SendPage function............ccccceueveuenene. 78, 228
SEIVICE IteM..uuvvvieieiiieieieeeeeeeeeaneeeee 80, 234
SEIVICE NAIME......oovevinrirereneiieeneerereaeeens 30
service topiCs.......coevvevveveveeencnne. 31, 62,217
SetContactAlerts function ...................... 289
SetEmailPrefs function............cccccoeveeee. 318
SetSessionHandling function................. 269
SPFILES.DBF
SQL...oiiiiiiiiccrs 412
XDbase.......cccoiiiiiiiiiiiiiiiii 397
SQL
determining whether a table is SQL or
XDASE .o 127,163
executing a quUery .........ccceeeeevvenennnnne. 282
setting the database login name and
PASSWOId ... 93
table, checking for.............ccccc...... 37,192
SQL database structures................. 397-413
SQLStream function.........ceceeeeveeeenveenneen. 282
status bar
message display.........ccocececiniiiininnnnn. 79
StatusMsg function............ccccccevvveuiininnnnee. 79
Summary tab ..o 86, 239
support and resources
developers FTP site........ccccccevveenuenenne. 24
GoldMine KnowledgeBase................... 24
sync log
updating sync logs with GM5S32.DLL
................................................... 140, 178
updating the Sync Log file.140, 179, 229
sync stamp
converting to time format .......... 143, 181
synchronization functions.............. 140,178
SyncStamp function .........cccceveveueeee. 80, 229
System Agent ..........cccccoevviiiiiininnne. 78, 227

table
checking for an Xbase or SQL table type
..................................................... 37,192
moving to the last record ........... 137,174
TemplateList function.........c.occevnnneeee. 312
templates, accessing e-mail templates..312
third-party developers.................... 383,399
timestamps
converting TLOG ........cccceevvuriinnnnns 80, 229
TLog import file
importing a prepared TLog import file
........................................... 141, 180, 230
TLog timestamps
converting to date and time stamps ...80
UNLOCK function ..........cceceeeveveviiinnen. 200
UpdateEmailAddress function.............. 271
UpdateMail function........c.ccceccevrvenencnees 306
UpdateWebSite function .............ccc.c...... 272
user
creating a new GoldMine login......... 296
generating a remote license file......... 300
logging in multiple users through the
APL .o, 99
reading security and rights for a DLL
USOT et 116, 231
removing a remote license.................. 301
retrieving field-level access rights ....298
retrieving security access ................... 297
returning a user list...........c.ccccceennnn. 290
returning group memberships for a
specified USer..........ccceceevverveenneuennes 291
validating a Web user name and
PASSWOId.....ccoeveviruenieninieinicinieenene 323
user group

returning a user group member list .290
returning group memberships for a

specified User .........ccoceevvenecnuecnes 291
saving a user group..........ccceeeevveernnes 291
VBA .o 31,33
visible fields, retrieving .............cc......... 298
Visual Basic examples for GM5S32.DLL
......................................................... 422-29
Visual Basic for Applications................... 31
Web
validating a Web user name and
PASSWOId.....ooeueiiiciicceecne 323

443



Integrating With GoldMine

Web import instruction file, processing 62,
217

Web site record,updating....................... 272
Work Area
accessing low-level data using work
ATCAS . eeeeeeeeeeeeeeeeeeeeeeeeeeeeenenee 125, 161
in DDE functions........c.cccceevveeveeeeeenneens 31
WriteContact function...........c.ccueeveenee. 270
WriteContactNotes function.................. 272
WiriteDetail function...........cccceeeveenennen. 274
WriteGMUser function.............cccceveene... 296
WriteGroupUsersList function.............. 291
WriteHistory function ............ccccceeeie. 281
WriteLinkedDoc function. ...................... 275
WriteOtherContact function.................. 273
WriteReferral function...........c.cceeuveeneee. 276
WriteSchedule function............c..c......... 277
Xbase
conditionals, operators, and logical
evaluators .....cccceeeeeeeeeeeeeeeeeenen. 370

creating an Xbase file with registered

F10LAS e, 65,219
date functions......cccceeeeeeeeeeeennen. 374,378
determining whether a table is SQL or
XDASE oo 127,163
evaluating an Xbase expression on a
contact record..........cccvviiininnennne. 292
expression, reading without opening a
file e 62,217
function/parameter types................. 370
functions.........cccoevevviiiiniiiine, 374
miscellaneous functions............. 374, 382
numeric functions.........c..cccc.c..... 374, 380
string functions ..........ccccccevvvncinne 374
table, checking for.............c......... 37,192
Xbase database structures................. 383-97
Xbase expressions .........c.ceeereeuennee 369-82
XbaseContactExpr function................... 292

444



	Table of Contents
	About this Manual
	Style Conventions used in this Manual
	Print Conventions
	General Conventions
	Mouse Conventions


	Methods of Integrating with GoldMine
	Integrating via Dynamic Data Exchange
	Integrating via GMXS32.DLL
	Integrating via the GoldMine XML API (GMXMLAPI.DLL)
	Interacting with GoldMine via the GoldMine COM Server
	Integrating via GoldMine Plug-ins
	Integrating via a Database Engine
	Comparing Integration Methods
	Resources and Support
	Open Developer Community
	Technology Partner Program
	Integration Tools


	Using DDE in GoldMine
	Merging Data into a Document
	Updating Database Information
	Querying for Data
	Identifying Telephone Numbers Automatically
	Linking Contact Records to an Accounting Application
	Inserting Incoming E-mail
	Linking GoldMine to MS Word for Windows
	Entering Application, Topic, and Item Names
	Establishing a DDE Conversation


	Working with DDE Functions
	Accessing Data Files
	Adding an Empty Record
	Parameters
	Return Value
	Closing an Opened File
	Deleting the Current Record
	Creating a Subset of Records
	Checking for an Xbase or SQL Table
	Moving to a Specified Record
	Opening a Data File
	Limiting GoldMine Search Range
	Reading a Field Value
	Checking the Current Record Number or Record ID
	Changing a Field Value
	Performing a Sequential Search
	Unlocking a Record

	Accessing Contact Records
	Linking GoldMine Fields with an External Application

	Accessing Specialized DDE Functions
	Retrieving Login Credentials for Use with the GMXS32.DLL
	Retrieving the RecID of the Current Opportunity
	Completing a Calendar Activity
	Displaying the Contact Record of an Incoming Caller
	Running a Counter
	Returning GoldMine Record Data
	Processing a Web Import Instruction File
	Reading an Xbase Expression Without Opening a File
	Adding Merge Fields to a Form
	Deleting Fields from a Form
	Closing a Form Profile
	Creating an Xbase File with Registered Fields
	Returning a Field Name for an Expression
	Returning a Value for Unattached Fields
	Counting the Number of Exported Records
	Creating a History Record
	Creating or Updating a Document Link
	Displaying a Message Dialog Box
	Adding a Merge Form
	Creating a Group
	Adding a Group Member
	Creating a Macro
	Creating and Sending a Pager Message
	Displaying a Message in the GoldMine Status Bar
	Converting TLog Timestamps

	DDE Macros
	DDE Macros for Merge Forms
	DDE Macros for the GoldMine License

	Passing Multiple Parameters to a Function
	Comparing Low Level/DDE Methodology to Business Logic Methodology

	Loading GMXS32.DLL and Logging In
	Setting the SQL Database Login Name and Password (GoldMine 6.7 or lower only)
	Loading an API Session (GoldMine 7.0 or higher)
	Loading a BDE Session (GoldMine 6.7 or lower)
	Logging in a User
	Closing an API Session (GoldMine 7.0 or higher)
	Closing a BDE Session (GoldMine 6.7 or lower)

	Logging in Multiple Users through the API
	Logging In
	Logging Out
	Switching Between Login Sessions
	Special Consideration for Multi-Threaded Applications

	Working with Business Logic Functions using the Name/Value Pair Method
	Creating an NV Container
	Creating an NV Container with Copied Values
	Copying Values between NV Containers
	Deleting an NV Container
	Reading Values from an NV Container
	Storing NV Pairs in a Container
	Searching for an NV Pair
	Removing one NV Pair
	Removing all NV Pairs from a Container
	Totaling NV Pairs in a Container
	Finding an NV Name
	Finding an NV Value
	Setting NV Pairs
	Executing Business Logic Methods

	Working with Multi-Value Name/Value Pairs
	Determining the Type of a Name/Value Pair
	Determining the Position of an NV Container in an NV Hierarchy
	Getting the Number of Values in a Multi-Value Pair
	Retrieving Containers from an NV Pair
	Retrieving the Values in a Multi-Value Pair
	Deleting Values from a Multi-Value Pair
	Assigning a Container to a Parent
	Creating an Empty Child Container Within the Parent
	Appending String Values to a Multi-Value Pair

	Low-level Data Access & Manipulation
	Reading Security and Rights for a DLL User
	Returning GoldMine Licensing Information
	Returning Calendar Data
	Retrieving Data with DataStream
	Advantages of Using DataStream
	DataStream Record Selection
	GMW_DS_Range
	GMW_DS_Query
	GMW_DS_Fetch
	GMW_DS_Close

	Accessing Low-Level Data Using Work Areas
	Opening a Data File
	Closing a Data File
	Checking for an SQL Table
	Adding a Record
	Deleting the Current Record
	Querying for a Field Value
	Checking the Current Record Number or Record ID
	Unlocking a Record
	Creating a Subset of Records
	Limiting Search Scope
	Performing a Sequential Search
	Moving to the First Record Match
	Setting the Current Index Tag
	Positioning the Record Pointer
	Moving to a Specified Record
	Moving to the First Record
	Moving to the Previous or Following Record
	Moving to the Last Record
	Seeking a Record
	Reading a Field Value
	Replacing a Field Value

	Updating Sync Logs with GMXS32.DLL
	Updating the Sync Log File
	Importing a Prepared TLog Import File
	Getting a New Record ID
	Converting the Sync Stamp


	Executing Your XML Document
	Creating Your XML Document
	Loading the API (GoldMine 7.0 or higher)
	Loading BDE (GoldMine 6.7)
	Logging in Subsequent Users
	Logging Out
	Unloading the API (GoldMine 7.0 or higher)
	Unloading BDE (GoldMine 6.7)
	Accessing Data with Business Logic Functions
	Accessing Nested Nodes of Data
	Business Logic Function Return Values

	Accessing Low-level Data Manipulation Functionality
	Retrieving Data with DataStream
	Advantages of Using DataStream
	DataStream Record Selection
	DS_Range
	DS_Query
	DS_Fetch
	DS_Close

	Accessing Low-Level Data Using Work Areas
	Opening a Data File
	Closing a Data File
	Checking for an SQL Table
	Adding a Record
	Deleting the Current Record
	Reading a Field Value
	Checking the Current Record Number or Record ID
	Changing a Field Value
	Unlocking a Record
	Creating a Subset of Records
	Limiting Search Scope
	Performing a Sequential Search
	Moving to the First Record Match
	Setting the Current Index Tag
	Positioning the Record Pointer
	Moving to a Specified Record
	Moving to the First Record
	Moving to the Previous or Following Record
	Moving to the Last Record
	Seeking a Record
	Reading a Field Value
	Replacing a Field Value
	Returning Calendar Data

	Updating Sync Logs
	Updating the Sync Log File
	Importing a Prepared TLog Import File
	Getting a New Record ID
	Converting the Sync Stamp


	Using MSXML to Handle GoldMine API XML
	Getting Started
	Defining the Root Element
	Setting Attributes
	Referencing an Attribute

	Creating Child Elements
	Executing the XML Document
	Reading the Results
	Reading the Code Attribute
	Reading the Returned Data


	Getting Started
	Executing Commands
	Logging In to GoldMine

	GoldMine.UI Class
	Accessing Data Files
	Adding an Empty Record
	Parameters
	Return Value
	Closing an Opened File
	Deleting the Current Record
	Creating a Subset of Records
	Checking for an Xbase or SQL Table
	Moving to a Specified Record
	Opening a Data File
	Limiting GoldMine Search Range
	Reading a Field Value
	Checking the Current Record Number or Record ID
	Changing a Field Value
	Performing a Sequential Search
	Unlocking a Record

	Accessing Contact Records
	Linking GoldMine Fields with an External Application

	Accessing Specialized GoldMine.UI Functions
	Retrieving a List of Active Plug-Ins (GoldMine 7.0 or higher)
	Running a Plug-In (GoldMine 7.0 or higher)
	Retrieving Login Credentials for Use with the GMXS32.DLL
	Retrieving the RecID of the Current Opportunity
	Completing a Calendar Activity
	Displaying Edit Windows for Calendar and History Items
	Displaying the Contact Record of an Incoming Caller
	Running a Counter
	Returning GoldMine Record Data
	Processing a Web Import Instruction File
	Reading an Xbase Expression Without Opening a File
	Adding Merge Fields to a Form
	Deleting Fields from a Form
	Closing a Form Profile
	Creating an Xbase File with Registered Fields
	Returning a Field Name for an Expression
	Returning a Value for Unattached Fields
	Counting the Number of Exported Records
	FormPrintedDoc
	Creating a History Record
	Creating or Updating a Document Link
	Displaying a Message Dialog Box
	Adding a Merge Form
	Playing a Toolbar Macro
	Creating and Sending a Pager Message
	Displaying a Message in the GoldMine Status Bar
	Converting TLog Timestamps
	Updating the Sync Log File
	Importing a Prepared TLog Import File
	Forcing Logout
	Reading Security and Rights

	Macros
	Executing Macros
	Available Data-Related Macros
	Macros for Merge Forms
	Macros for the GoldMine License

	Controlling the GoldMine User Interface
	Getting Window Information
	Registering for Events
	Handling GoldMine.UI Events
	Manipulating Controls Programatically
	Executing a Menu Command
	Opening a Mail Record


	GoldMine.RecObj Class
	GoldMine.GMSystemEvents Class
	Business Logic Functions and Name/Value Pairs
	Controlling Database Session Handling
	Creating or Updating a Contact Record
	Updating an E-mail Address
	Updating a Web Site Record
	Updating Notes of a Primary Contact Record
	Creating or Updating an Additional Contact Record
	Creating or Updating a Detail Record
	Creating or Updating a Linked Document
	Creating or Updating a Referral
	Creating or Updating Activities
	Creating or Updating a History Record
	Attaching an Automated Process
	Executing an SQL Query
	Creating a Contact Group
	Adding Contacts to a Contact Group
	Using AddContactGrpMembers
	Reading a Record
	Reading a Contact1 or Contact2 Record
	Returning Alerts Attached to a Contact Record
	Attaching an Alert
	Returning All Alerts
	Returning a User List
	Returning a User Group Member List
	Returning Group Memberships for a Specified User
	Saving a User Group
	Retrieving the Names of User Groups
	Evaluating an Xbase Expression on a Contact Record
	Encrypting Text
	Decrypting Encoded Text
	Retrieving the Default Contact Automated Process
	Deleting Calendar Items
	Deleting History Items

	Handling GoldMine Security
	Creating a New GoldMine Login
	Reading a GoldMine Login
	Retrieving Security Access
	Retrieving Field-Level Access Rights
	Retrieving Visible Fields
	Checking for Record Curtaining
	Generating a Remote License File
	Removing a Remote License

	E-mail Name/Value Functions
	Reading a Mail Message
	Queuing a Message for Delivery
	Updating a Mail Message
	Saving a Mail Message into GoldMine
	Deleting a Message
	Filing a Message in History
	Preparing the NV Container for a New Mail Message
	Preparing the NV Container to Reply to a Mail Message
	Preparing an NV Container to Forward a Mail Message
	Adding an E-mail Center Folder
	Deleting an E-Mail Center Folder
	Obtaining a List of E-Mail Center Folders
	FromList
	Accessing E-mail Templates
	Retrieving E-mail Account Information
	Retrieving a List of Messages Waiting Online
	Retrieving Messages
	Deleting Online E-mail Messages
	Return Name/Value Pairs
	Saving a Manual List of Recipients
	Retrieving a Manual List of Recipients
	Managing Internet E-mail Preferences
	Validating a Web User Name and Password

	Manipulating User-Defined Fields and Views
	Reading All Field Views
	Deleting a Contact View
	Creating or Modifying a Contact View
	Reading Custom Fields
	Modifying the Structure of Custom Fields
	Reading Calendar Preferences
	Modifying Calendar Preferences
	Reading Personal Preferences
	Updating Personal Preferences
	Reading Record Preferences
	Updating Record Preferences
	Reading Schedule Preferences
	Updating Schedule Preferences
	Reading Alarm Preferences
	Updating Alarm Preferences
	Reading Lookup Preferences
	Updating Alarm Preferences
	Reading Pager Preferences
	Updating Pager Preferences
	Reading Miscellaneous Preferences
	Updating Miscellaneous Preferences
	Reading the Database Engine Type (7.0 or higher)
	Reading a List of GoldMine User Groups
	Creating or Updating GoldMine User Groups
	Adding a GoldMine User to a Group
	Removing a GoldMine User from a Group
	Creating or Updating an Opportunity or Project

	Using ActiveX Plug-in Support
	Using HTML Plug-in Support
	Plug-In Description File
	HTML Plug-in Description File
	ActiveX Plug-in Description File

	Security and Plug-in Directories
	Security
	Adding a Local Plug-in Directory

	Sample Plug-ins
	gmail.gme
	External.gme
	gmplus.asp


	Function/Parameter Types
	Conditionals, Operators, and Logical Evaluators
	Conditionals
	Operators
	Logical Evaluators

	Xbase Functions
	String Functions
	Date Functions
	Numeric Functions
	Miscellaneous Functions
	CAL.DBF
	CONTACT1.DBF
	CONTACT2.DBF
	CONTGRPS.DBF
	CONTHIST.DBF
	CONTSUPP.DBF
	INFOMINE.DBF
	LOOKUP.DBF
	MAILBOX.DBF
	OPMGR.DBF
	PERPHONE.DBF
	RESITEMS.DBF
	SPFILES.DBF
	CAL Table
	CONTACT1 Table
	CONTACT2 Table
	CONTGRPS Table
	CONTHIST Table
	CONTSUPP Table
	INFOMINE Table
	LOOKUP Table
	MAILBOX Table
	OPMGR Table
	PERPHONE Table
	RESITEMS Table
	SPFILES Table

	GMXS32.DLL Code Examples
	C++ Examples
	Function prototypes
	Logging In
	Creating a Contact with Business Logic/�Enumerating a Name Value Container/DataStream
	Low-Level Work Area

	Visual Basic Examples
	Function prototypes
	Logging In
	Creating a Contact
	Enumerating a Container
	DataStream
	Low-Level WorkArea

	Delphi Examples
	Function prototypes
	Creating a Contact
	Enumerating a Container
	DataStream
	Low-Level Work Area


	General Index

